Upload 3 files
Browse files- .gitattributes +1 -0
- agent.png +3 -0
- example/vllm_v2_extraction_agent.py +287 -0
- example/vllm_v2_weather_agent.py +234 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
agent.png filter=lfs diff=lfs merge=lfs -text
|
agent.png
ADDED
|
Git LFS Details
|
example/vllm_v2_extraction_agent.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import List, Dict, Any, Optional
|
| 3 |
+
import json
|
| 4 |
+
import requests
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
from openai import OpenAI
|
| 7 |
+
|
| 8 |
+
"""
|
| 9 |
+
EXAMPLE OUTPUT:
|
| 10 |
+
|
| 11 |
+
What is the current population for the city where Einstein was born?
|
| 12 |
+
|
| 13 |
+
Turn 1
|
| 14 |
+
----------------------------------------
|
| 15 |
+
|
| 16 |
+
Executing: fetch_wiki_content
|
| 17 |
+
Arguments: {'title': 'Albert Einstein'}
|
| 18 |
+
|
| 19 |
+
Turn 2
|
| 20 |
+
----------------------------------------
|
| 21 |
+
|
| 22 |
+
Executing: deliver_answer
|
| 23 |
+
Arguments: {'fields': ['Ulm, German Empire']}
|
| 24 |
+
ANSWER FROM THE ASSISTANT: ['Ulm, German Empire']
|
| 25 |
+
|
| 26 |
+
Turn 3
|
| 27 |
+
----------------------------------------
|
| 28 |
+
|
| 29 |
+
Executing: fetch_wiki_content
|
| 30 |
+
Arguments: {'title': 'Ulm'}
|
| 31 |
+
|
| 32 |
+
Turn 4
|
| 33 |
+
----------------------------------------
|
| 34 |
+
|
| 35 |
+
Executing: deliver_answer
|
| 36 |
+
Arguments: {'fields': ['128,928']}
|
| 37 |
+
ANSWER FROM THE ASSISTANT: ['128,928']
|
| 38 |
+
|
| 39 |
+
Turn 5
|
| 40 |
+
----------------------------------------
|
| 41 |
+
Extraction Complete
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
Why was Einstein famous?
|
| 45 |
+
|
| 46 |
+
Turn 1
|
| 47 |
+
----------------------------------------
|
| 48 |
+
|
| 49 |
+
Executing: fetch_wiki_content
|
| 50 |
+
Arguments: {'title': 'Albert Einstein'}
|
| 51 |
+
|
| 52 |
+
Turn 2
|
| 53 |
+
----------------------------------------
|
| 54 |
+
|
| 55 |
+
Executing: deliver_answer
|
| 56 |
+
Arguments: {'fields': ['Best known for developing the theory of relativity, Einstein also made important contributions to quantum mechanics.', 'His mass–energy equivalence formula E = mc2, which arises from special relativity, has been called "the world\'s most famous equation."', 'He received the 1921 Nobel Prize in Physics.']}
|
| 57 |
+
ANSWER FROM THE ASSISTANT: ['Best known for developing the theory of relativity, Einstein also made important contributions to quantum mechanics.', 'His mass–energy equivalence formula E = mc2, which arises from special relativity, has been called "the world\'s most famous equation."', 'He received the 1921 Nobel Prize in Physics.']
|
| 58 |
+
|
| 59 |
+
Turn 3
|
| 60 |
+
----------------------------------------
|
| 61 |
+
Extraction Complete
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
@dataclass
|
| 65 |
+
class WikiConfig:
|
| 66 |
+
"""Configuration for OpenAI and Wikipedia settings"""
|
| 67 |
+
api_key: str = "sk-123"
|
| 68 |
+
api_base: str = "{info}/v1"
|
| 69 |
+
model: Optional[str] = None
|
| 70 |
+
max_turns: int = 5
|
| 71 |
+
wikipedia_base_url: str = "https://en.wikipedia.org/wiki/"
|
| 72 |
+
|
| 73 |
+
class WikiTools:
|
| 74 |
+
"""Collection of Wikipedia and extraction tools"""
|
| 75 |
+
|
| 76 |
+
def __init__(self, base_url: str):
|
| 77 |
+
self.base_url = base_url
|
| 78 |
+
|
| 79 |
+
def fetch_wiki_content(self, title: str, section: Optional[str] = None) -> str:
|
| 80 |
+
"""Fetch and clean Wikipedia article content, optionally from a specific section"""
|
| 81 |
+
url = f"{self.base_url}{title.replace(' ', '_')}"
|
| 82 |
+
response = requests.get(url)
|
| 83 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 84 |
+
|
| 85 |
+
# Remove unwanted sections
|
| 86 |
+
for unwanted in soup.find_all(['script', 'style', 'footer', 'header']):
|
| 87 |
+
unwanted.decompose()
|
| 88 |
+
|
| 89 |
+
if section:
|
| 90 |
+
# Find specific section if requested
|
| 91 |
+
section_tag = soup.find('span', {'id': section})
|
| 92 |
+
if section_tag:
|
| 93 |
+
content = section_tag.parent.find_next_siblings()
|
| 94 |
+
text = ' '.join(tag.get_text() for tag in content)
|
| 95 |
+
else:
|
| 96 |
+
return "Section not found"
|
| 97 |
+
else:
|
| 98 |
+
# Get main content
|
| 99 |
+
content = soup.find(id='mw-content-text')
|
| 100 |
+
if content:
|
| 101 |
+
text = content.get_text()
|
| 102 |
+
else:
|
| 103 |
+
return "Content not found"
|
| 104 |
+
|
| 105 |
+
# Clean and normalize text
|
| 106 |
+
text = ' '.join(text.split())
|
| 107 |
+
return text[:8000] # Truncate to avoid token limits
|
| 108 |
+
|
| 109 |
+
@staticmethod
|
| 110 |
+
def deliver_answer(fields: List[str]) -> Dict[str, Any]:
|
| 111 |
+
"""Extract specific information from text spans"""
|
| 112 |
+
print (f"ANSWER FROM THE ASSISTANT: {fields}")
|
| 113 |
+
return {
|
| 114 |
+
"extracted_fields": "Provided fields was delivered to the user successfully."
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
class ToolRegistry:
|
| 118 |
+
"""Registry of available tools and their schemas"""
|
| 119 |
+
|
| 120 |
+
def __init__(self, wiki_tools: WikiTools):
|
| 121 |
+
self.wiki_tools = wiki_tools
|
| 122 |
+
|
| 123 |
+
@property
|
| 124 |
+
def available_functions(self) -> Dict[str, callable]:
|
| 125 |
+
return {
|
| 126 |
+
"fetch_wiki_content": self.wiki_tools.fetch_wiki_content,
|
| 127 |
+
"deliver_answer": self.wiki_tools.deliver_answer
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
@property
|
| 131 |
+
def tool_schemas(self) -> List[Dict[str, Any]]:
|
| 132 |
+
return [
|
| 133 |
+
{
|
| 134 |
+
"type": "function",
|
| 135 |
+
"function": {
|
| 136 |
+
"name": "fetch_wiki_content",
|
| 137 |
+
"description": "Fetch content from a Wikipedia article",
|
| 138 |
+
"parameters": {
|
| 139 |
+
"type": "object",
|
| 140 |
+
"properties": {
|
| 141 |
+
"title": {
|
| 142 |
+
"type": "string",
|
| 143 |
+
"description": "The title of the Wikipedia article"
|
| 144 |
+
},
|
| 145 |
+
"section": {
|
| 146 |
+
"type": "string",
|
| 147 |
+
"description": "Optional: Specific section ID to fetch",
|
| 148 |
+
"optional": True
|
| 149 |
+
}
|
| 150 |
+
},
|
| 151 |
+
"required": ["title"]
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"type": "function",
|
| 157 |
+
"function": {
|
| 158 |
+
"name": "deliver_answer",
|
| 159 |
+
"description": "Extract specific information from the fetched text",
|
| 160 |
+
"parameters": {
|
| 161 |
+
"type": "object",
|
| 162 |
+
"properties": {
|
| 163 |
+
"fields": {
|
| 164 |
+
"type": "array",
|
| 165 |
+
"items": {"type": "string"},
|
| 166 |
+
"description": "List of text spans from the article that are relevant to the query"
|
| 167 |
+
}
|
| 168 |
+
},
|
| 169 |
+
"required": ["fields"]
|
| 170 |
+
}
|
| 171 |
+
}
|
| 172 |
+
}
|
| 173 |
+
]
|
| 174 |
+
|
| 175 |
+
class WikiExtractionAgent:
|
| 176 |
+
"""Main agent class that handles the extraction process"""
|
| 177 |
+
|
| 178 |
+
def __init__(self, config: WikiConfig):
|
| 179 |
+
self.config = config
|
| 180 |
+
self.client = OpenAI(api_key=config.api_key, base_url=config.api_base)
|
| 181 |
+
self.wiki_tools = WikiTools(config.wikipedia_base_url)
|
| 182 |
+
self.tools = ToolRegistry(self.wiki_tools)
|
| 183 |
+
self.messages = [{"system" : "1. First fetch any wikipedia pages you might need to answer the user query. Do not answer from parametric knowledge.\n\n2.Then, provide the answer to the user using the deliver_answer from the retrieved wikipedia page.\n\n3. You may need to issue multiple calls to wikipedia after extracting answers if there are nested dependencies for information."}]
|
| 184 |
+
|
| 185 |
+
if not config.model:
|
| 186 |
+
models = self.client.models.list()
|
| 187 |
+
self.config.model = models.data[0].id
|
| 188 |
+
|
| 189 |
+
def _serialize_tool_call(self, tool_call) -> Dict[str, Any]:
|
| 190 |
+
"""Convert tool call to serializable format"""
|
| 191 |
+
return {
|
| 192 |
+
"id": tool_call.id,
|
| 193 |
+
"type": tool_call.type,
|
| 194 |
+
"function": {
|
| 195 |
+
"name": tool_call.function.name,
|
| 196 |
+
"arguments": tool_call.function.arguments
|
| 197 |
+
}
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
def process_tool_calls(self, message) -> List[Dict[str, Any]]:
|
| 201 |
+
"""Process and execute tool calls from assistant"""
|
| 202 |
+
results = []
|
| 203 |
+
|
| 204 |
+
for tool_call in message.tool_calls:
|
| 205 |
+
function_name = tool_call.function.name
|
| 206 |
+
function_args = json.loads(tool_call.function.arguments)
|
| 207 |
+
|
| 208 |
+
print(f"\nExecuting: {function_name}")
|
| 209 |
+
print(f"Arguments: {function_args}")
|
| 210 |
+
|
| 211 |
+
function_response = self.tools.available_functions[function_name](**function_args)
|
| 212 |
+
results.append({
|
| 213 |
+
"tool": function_name,
|
| 214 |
+
"args": function_args,
|
| 215 |
+
"response": function_response
|
| 216 |
+
})
|
| 217 |
+
|
| 218 |
+
self.messages.append({
|
| 219 |
+
"role": "tool",
|
| 220 |
+
"content": json.dumps(function_response),
|
| 221 |
+
"tool_call_id": tool_call.id,
|
| 222 |
+
"name": function_name
|
| 223 |
+
})
|
| 224 |
+
|
| 225 |
+
return results
|
| 226 |
+
|
| 227 |
+
def extract_information(self, query: str) -> List[Dict[str, Any]]:
|
| 228 |
+
"""Main method to handle the extraction process"""
|
| 229 |
+
self.messages = [{
|
| 230 |
+
"role": "user",
|
| 231 |
+
"content": f"""Extract information from Wikipedia to answer this query: {query}
|
| 232 |
+
|
| 233 |
+
You can use these tools:
|
| 234 |
+
1. fetch_wiki_content: Get article content
|
| 235 |
+
2. deliver_answer: deliver relevant information
|
| 236 |
+
|
| 237 |
+
Please fetch content first, and iterate as needed to get to the webpage with the correct answer and then deliver the relevant information."""
|
| 238 |
+
}]
|
| 239 |
+
|
| 240 |
+
all_results = []
|
| 241 |
+
|
| 242 |
+
for turn in range(self.config.max_turns):
|
| 243 |
+
print(f"\nTurn {turn + 1}")
|
| 244 |
+
print("-" * 40)
|
| 245 |
+
|
| 246 |
+
response = self.client.chat.completions.create(
|
| 247 |
+
messages=self.messages,
|
| 248 |
+
model=self.config.model,
|
| 249 |
+
tools=self.tools.tool_schemas,
|
| 250 |
+
temperature=0.0,
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
message = response.choices[0].message
|
| 254 |
+
|
| 255 |
+
if not message.tool_calls:
|
| 256 |
+
print("Extraction Complete")
|
| 257 |
+
break
|
| 258 |
+
|
| 259 |
+
self.messages.append({
|
| 260 |
+
"role": "assistant",
|
| 261 |
+
"content": json.dumps(message.content),
|
| 262 |
+
"tool_calls": [self._serialize_tool_call(tc) for tc in message.tool_calls]
|
| 263 |
+
})
|
| 264 |
+
|
| 265 |
+
results = self.process_tool_calls(message)
|
| 266 |
+
all_results.extend(results)
|
| 267 |
+
|
| 268 |
+
return all_results
|
| 269 |
+
|
| 270 |
+
def main():
|
| 271 |
+
# Example usage
|
| 272 |
+
config = WikiConfig()
|
| 273 |
+
agent = WikiExtractionAgent(config)
|
| 274 |
+
|
| 275 |
+
# Multi-step query example
|
| 276 |
+
results = agent.extract_information(
|
| 277 |
+
query="""What is the current population for the city where Einstein was born?"""
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# Single query example
|
| 281 |
+
results = agent.extract_information(
|
| 282 |
+
query="Why was Einstein famous?"
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
if __name__ == "__main__":
|
| 287 |
+
main()
|
example/vllm_v2_weather_agent.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
import json
|
| 3 |
+
from typing import List, Dict, Any, Optional
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
"""
|
| 6 |
+
EXAMPLE OUTPUT:
|
| 7 |
+
|
| 8 |
+
****************************************
|
| 9 |
+
RUNNING QUERY: What's the weather for Paris, TX in fahrenheit?
|
| 10 |
+
Turn 1
|
| 11 |
+
----------------------------------------
|
| 12 |
+
|
| 13 |
+
Executing: get_geo_coordinates
|
| 14 |
+
Arguments: {'city': 'Paris', 'state': 'TX'}
|
| 15 |
+
Response: The coordinates for Paris, TX are: latitude 33.6609, longitude 95.5555
|
| 16 |
+
|
| 17 |
+
Turn 2
|
| 18 |
+
----------------------------------------
|
| 19 |
+
|
| 20 |
+
Executing: get_current_weather
|
| 21 |
+
Arguments: {'latitude': [33.6609], 'longitude': [95.5555], 'unit': 'fahrenheit'}
|
| 22 |
+
Response: The weather is 85 degrees fahrenheit. It is partly cloudy, with highs in the 90's.
|
| 23 |
+
|
| 24 |
+
Turn 3
|
| 25 |
+
----------------------------------------
|
| 26 |
+
Conversation Complete
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
****************************************
|
| 30 |
+
RUNNING QUERY: Who won the most recent PGA?
|
| 31 |
+
Turn 1
|
| 32 |
+
----------------------------------------
|
| 33 |
+
|
| 34 |
+
Executing: no_relevant_function
|
| 35 |
+
Arguments: {'user_query_span': 'Who won the most recent PGA?'}
|
| 36 |
+
Response: No relevant function for your request was found. We will stop here.
|
| 37 |
+
|
| 38 |
+
Turn 2
|
| 39 |
+
----------------------------------------
|
| 40 |
+
Conversation Complete
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
@dataclass
|
| 44 |
+
class WeatherConfig:
|
| 45 |
+
"""Configuration for OpenAI and API settings"""
|
| 46 |
+
api_key: str = "" # FILL IN WITH YOUR VLLM_ENDPOINT_KEY
|
| 47 |
+
api_base: str = "" # FILL IN WITH YOUR VLLM_ENDPOINT
|
| 48 |
+
model: Optional[str] = None
|
| 49 |
+
max_turns: int = 5
|
| 50 |
+
|
| 51 |
+
class WeatherTools:
|
| 52 |
+
"""Collection of available tools/functions for the weather agent"""
|
| 53 |
+
|
| 54 |
+
@staticmethod
|
| 55 |
+
def get_current_weather(latitude: List[float], longitude: List[float], unit: str) -> str:
|
| 56 |
+
"""Get weather for given coordinates"""
|
| 57 |
+
# We are mocking the weather here, but in the real world, you will submit a request here.
|
| 58 |
+
return f"The weather is 85 degrees {unit}. It is partly cloudy, with highs in the 90's."
|
| 59 |
+
|
| 60 |
+
@staticmethod
|
| 61 |
+
def get_geo_coordinates(city: str, state: str) -> str:
|
| 62 |
+
"""Get coordinates for a given city"""
|
| 63 |
+
coordinates = {
|
| 64 |
+
"Dallas": {"TX": (32.7767, -96.7970)},
|
| 65 |
+
"San Francisco": {"CA": (37.7749, -122.4194)},
|
| 66 |
+
"Paris": {"TX": (33.6609, 95.5555)}
|
| 67 |
+
}
|
| 68 |
+
lat, lon = coordinates.get(city, {}).get(state, (0, 0))
|
| 69 |
+
# We are mocking the weather here, but in the real world, you will submit a request here.
|
| 70 |
+
return f"The coordinates for {city}, {state} are: latitude {lat}, longitude {lon}"
|
| 71 |
+
|
| 72 |
+
@staticmethod
|
| 73 |
+
def no_relevant_function(user_query_span : str) -> str:
|
| 74 |
+
return "No relevant function for your request was found. We will stop here."
|
| 75 |
+
|
| 76 |
+
class ToolRegistry:
|
| 77 |
+
"""Registry of available tools and their schemas"""
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def available_functions(self) -> Dict[str, callable]:
|
| 81 |
+
return {
|
| 82 |
+
"get_current_weather": WeatherTools.get_current_weather,
|
| 83 |
+
"get_geo_coordinates": WeatherTools.get_geo_coordinates,
|
| 84 |
+
"no_relevant_function" : WeatherTools.no_relevant_function,
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
@property
|
| 88 |
+
def tool_schemas(self) -> List[Dict[str, Any]]:
|
| 89 |
+
return [
|
| 90 |
+
{
|
| 91 |
+
"type": "function",
|
| 92 |
+
"function": {
|
| 93 |
+
"name": "get_current_weather",
|
| 94 |
+
"description": "Get the current weather in a given location. Use exact coordinates.",
|
| 95 |
+
"parameters": {
|
| 96 |
+
"type": "object",
|
| 97 |
+
"properties": {
|
| 98 |
+
"latitude": {"type": "array", "description": "The latitude for the city."},
|
| 99 |
+
"longitude": {"type": "array", "description": "The longitude for the city."},
|
| 100 |
+
"unit": {
|
| 101 |
+
"type": "string",
|
| 102 |
+
"description": "The unit to fetch the temperature in",
|
| 103 |
+
"enum": ["celsius", "fahrenheit"]
|
| 104 |
+
}
|
| 105 |
+
},
|
| 106 |
+
"required": ["latitude", "longitude", "unit"]
|
| 107 |
+
}
|
| 108 |
+
}
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"type": "function",
|
| 112 |
+
"function": {
|
| 113 |
+
"name": "get_geo_coordinates",
|
| 114 |
+
"description": "Get the latitude and longitude for a given city",
|
| 115 |
+
"parameters": {
|
| 116 |
+
"type": "object",
|
| 117 |
+
"properties": {
|
| 118 |
+
"city": {"type": "string", "description": "The city to find coordinates for"},
|
| 119 |
+
"state": {"type": "string", "description": "The two-letter state abbreviation"}
|
| 120 |
+
},
|
| 121 |
+
"required": ["city", "state"]
|
| 122 |
+
}
|
| 123 |
+
}
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"type": "function",
|
| 127 |
+
"function" : {
|
| 128 |
+
"name": "no_relevant_function",
|
| 129 |
+
"description": "Call this when no other provided function can be called to answer the user query.",
|
| 130 |
+
"parameters": {
|
| 131 |
+
"type": "object",
|
| 132 |
+
"properties": {
|
| 133 |
+
"user_query_span": {
|
| 134 |
+
"type": "string",
|
| 135 |
+
"description": "The part of the user_query that cannot be answered by any other function calls."
|
| 136 |
+
}
|
| 137 |
+
},
|
| 138 |
+
"required": ["user_query_span"]
|
| 139 |
+
}
|
| 140 |
+
}
|
| 141 |
+
}
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
class WeatherAgent:
|
| 145 |
+
"""Main agent class that handles the conversation and tool execution"""
|
| 146 |
+
|
| 147 |
+
def __init__(self, config: WeatherConfig):
|
| 148 |
+
self.config = config
|
| 149 |
+
self.client = OpenAI(api_key=config.api_key, base_url=config.api_base)
|
| 150 |
+
self.tools = ToolRegistry()
|
| 151 |
+
self.messages = []
|
| 152 |
+
|
| 153 |
+
if not config.model:
|
| 154 |
+
models = self.client.models.list()
|
| 155 |
+
self.config.model = models.data[0].id
|
| 156 |
+
|
| 157 |
+
def _serialize_tool_call(self, tool_call) -> Dict[str, Any]:
|
| 158 |
+
"""Convert tool call to serializable format"""
|
| 159 |
+
return {
|
| 160 |
+
"id": tool_call.id,
|
| 161 |
+
"type": tool_call.type,
|
| 162 |
+
"function": {
|
| 163 |
+
"name": tool_call.function.name,
|
| 164 |
+
"arguments": tool_call.function.arguments
|
| 165 |
+
}
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
def process_tool_calls(self, message) -> None:
|
| 169 |
+
"""Process and execute tool calls from assistant"""
|
| 170 |
+
for tool_call in message.tool_calls:
|
| 171 |
+
function_name = tool_call.function.name
|
| 172 |
+
function_args = json.loads(tool_call.function.arguments)
|
| 173 |
+
|
| 174 |
+
print(f"\nExecuting: {function_name}")
|
| 175 |
+
print(f"Arguments: {function_args}")
|
| 176 |
+
|
| 177 |
+
function_response = self.tools.available_functions[function_name](**function_args)
|
| 178 |
+
print(f"Response: {function_response}")
|
| 179 |
+
|
| 180 |
+
self.messages.append({
|
| 181 |
+
"role": "tool",
|
| 182 |
+
"content": json.dumps(function_response),
|
| 183 |
+
"tool_call_id": tool_call.id,
|
| 184 |
+
"name": function_name
|
| 185 |
+
})
|
| 186 |
+
|
| 187 |
+
def run_conversation(self, initial_query: str) -> None:
|
| 188 |
+
"""Run the main conversation loop"""
|
| 189 |
+
self.messages = [{"role": "user", "content": initial_query}]
|
| 190 |
+
|
| 191 |
+
print ("\n" * 5)
|
| 192 |
+
print ("*" * 40)
|
| 193 |
+
print (f"RUNNING QUERY: {initial_query}")
|
| 194 |
+
|
| 195 |
+
for turn in range(self.config.max_turns):
|
| 196 |
+
print(f"\nTurn {turn + 1}")
|
| 197 |
+
print("-" * 40)
|
| 198 |
+
|
| 199 |
+
response = self.client.chat.completions.create(
|
| 200 |
+
messages=self.messages,
|
| 201 |
+
model=self.config.model,
|
| 202 |
+
tools=self.tools.tool_schemas,
|
| 203 |
+
temperature=0.0,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
message = response.choices[0].message
|
| 207 |
+
|
| 208 |
+
if not message.tool_calls:
|
| 209 |
+
print("Conversation Complete")
|
| 210 |
+
break
|
| 211 |
+
|
| 212 |
+
self.messages.append({
|
| 213 |
+
"role": "assistant",
|
| 214 |
+
"content": json.dumps(message.content),
|
| 215 |
+
"tool_calls": [self._serialize_tool_call(tc) for tc in message.tool_calls]
|
| 216 |
+
})
|
| 217 |
+
|
| 218 |
+
self.process_tool_calls(message)
|
| 219 |
+
|
| 220 |
+
if turn >= self.config.max_turns - 1:
|
| 221 |
+
print("Maximum turns reached")
|
| 222 |
+
|
| 223 |
+
def main():
|
| 224 |
+
# Example usage
|
| 225 |
+
config = WeatherConfig()
|
| 226 |
+
agent = WeatherAgent(config)
|
| 227 |
+
agent.run_conversation("What's the weather for Paris, TX in fahrenheit?")
|
| 228 |
+
|
| 229 |
+
# Example OOD usage
|
| 230 |
+
agent.run_conversation("Who won the most recent PGA?")
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
if __name__ == "__main__":
|
| 234 |
+
main()
|