| from .pretrain import * | |
| del available_corpus | |
| train_file = [ | |
| f"{anno_root_downstream}/flickr30k_train.json", | |
| f"{data_root}/f30k", | |
| "video", | |
| ] | |
| test_file = dict( | |
| val=[ | |
| f"{anno_root_downstream}/flickr30k_val.json", | |
| f"{data_root}/f30k", | |
| "video", | |
| ], | |
| test=[ | |
| f"{anno_root_downstream}/flickr30k_test.json", | |
| f"{data_root}/f30k", | |
| "video", | |
| ], | |
| ) | |
| test_types = ["val"] | |
| stop_key = "val/" # used to choose the best ckpt. If None, save the last. | |
| is_paragraph_retrieval = False | |
| criterion["loss_weight"]["mlm"] = 0.0 | |
| scheduler["warmup_epochs"] = 0 | |
| optimizer["lr"] = 1e-5 | |
| max_txt_l = 32 | |
| batch_size = 128 | |
| num_frames = 1 | |
| num_frames_test = 1 | |
| log_freq = 100 | |