sunitha-ravi commited on
Commit
dc3659e
·
verified ·
1 Parent(s): cce3fa4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -161
README.md CHANGED
@@ -1,199 +1,129 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
 
 
 
 
133
 
 
 
 
134
 
135
- ## Model Examination [optional]
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
 
 
 
154
 
155
- ### Model Architecture and Objective
 
 
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
  ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-generation
5
+ - pytorch
6
+ - Lynx
7
+ - Patronus AI
8
+ - evaluation
9
+ - hallucination-detection
10
+ license: cc-by-nc-4.0
11
+ language:
12
+ - en
13
  ---
14
 
15
  # Model Card for Model ID
16
 
17
+ Lynx is an open-source hallucination evaluation model. Patronus-Lynx-8B-Instruct-v1.1 was trained on a mix of datasets including CovidQA, PubmedQA, DROP, RAGTruth.
18
+ The datasets contain a mix of hand-annotated and synthetic data. The maximum sequence length is 8000 tokens.
19
 
20
 
21
  ## Model Details
22
 
23
+ - **Model Type:** Patronus-Lynx-8B-Instruct-v1.1 is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct model.
24
+ - **Language:** Primarily English
25
+ - **Developed by:** Patronus AI
26
+ - **Paper:** [https://arxiv.org/abs/2407.08488](https://arxiv.org/abs/2407.08488)
27
+ - **License:** [https://creativecommons.org/licenses/by-nc/4.0/](https://creativecommons.org/licenses/by-nc/4.0/)
28
 
29
+ ### Model Sources
 
 
 
 
 
 
 
 
30
 
31
  <!-- Provide the basic links for the model. -->
32
 
33
+ - **Repository:** [https://github.com/patronus-ai/Lynx-hallucination-detection](https://github.com/patronus-ai/Lynx-hallucination-detection)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
 
 
 
 
 
 
 
35
 
36
  ## How to Get Started with the Model
37
+ Lynx is trained to detect hallucinations in RAG settings. Provided a document, question and answer, the model can evaluate whether the answer is faithful to the document.
38
 
39
+ To use the model, we recommend using the following prompt:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
+ ```
42
+ PROMPT = """
43
+ Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ --
46
+ QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
47
+ {question}
48
 
49
+ --
50
+ DOCUMENT:
51
+ {context}
52
 
53
+ --
54
+ ANSWER:
55
+ {answer}
56
 
57
+ --
58
 
59
+ Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
60
+ {{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
61
+ """
62
+ ```
63
 
64
+ The model will output the score as 'PASS' if the answer is faithful to the document or FAIL if the answer is not faithful to the document.
65
 
66
+ ## Inference
67
 
68
+ To run inference, you can use HF pipeline:
69
 
70
+ ```
 
 
 
 
71
 
72
+ model_name = 'PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct-v1.1'
73
+ pipe = pipeline(
74
+ "text-generation",
75
+ model=model_name,
76
+ max_new_tokens=600,
77
+ device="cuda",
78
+ return_full_text=False
79
+ )
80
 
81
+ messages = [
82
+ {"role": "user", "content": prompt},
83
+ ]
84
 
85
+ result = pipe(messages)
86
+ print(result[0]['generated_text'])
87
 
88
+ ```
89
 
90
+ Since the model is trained in chat format, ensure that you pass the prompt as a user message.
91
 
92
+ For more information on training details, refer to our [ArXiv paper](https://arxiv.org/abs/2407.08488).
93
 
94
+ ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
+ The model was evaluated on [PatronusAI/HaluBench](https://huggingface.co/datasets/PatronusAI/HaluBench).
97
+
98
+
99
+ | Model | HaluEval | RAGTruth | FinanceBench | DROP | CovidQA | PubmedQA | Overall
100
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
101
+ | GPT-4o | 87.9% | 84.3% | **85.3%** | 84.3% | 95.0% | 82.1% | 86.5% |
102
+ | GPT-4-Turbo | 86.0% | **85.0%** | 82.2% | 84.8% | 90.6% | 83.5% | 85.0% |
103
+ | GPT-3.5-Turbo | 62.2% | 50.7% | 60.9% | 57.2% | 56.7% | 62.8% | 58.7% |
104
+ | Claude-3-Sonnet | 84.5% | 79.1% | 69.7% | 84.3% | 95.0% | 82.9% | 78.8% |
105
+ | Claude-3-Haiku | 68.9% | 78.9% | 58.4% | 84.3% | 95.0% | 82.9% | 69.0% |
106
+ | RAGAS Faithfulness | 70.6% | 75.8% | 59.5% | 59.6% | 75.0% | 67.7% | 66.9% |
107
+ | Mistral-Instruct-7B | 78.3% | 77.7% | 56.3% | 56.3% | 71.7% | 77.9% | 69.4% |
108
+ | Llama-3-Instruct-8B | 83.1% | 80.0% | 55.0% | 58.2% | 75.2% | 70.7% | 70.4% |
109
+ | Llama-3-Instruct-70B | 87.0% | 83.8% | 72.7% | 69.4% | 85.0% | 82.6% | 80.1% |
110
+ | LYNX (8B) | 85.7% | 80.0% | 72.5% | 77.8% | 96.3% | 85.2% | 82.9% |
111
+ | LYNX (70B) | **88.4%** | 80.2% | 81.4% | **86.4%** | **97.5%** | **90.4%** | **87.4%** |
112
+ | LYNX v1.1 (8B) | 87.27% | 79.88% | 75.60% | 77.50% | 96.90% | 88.90% | 84.34% |
113
+
114
+ ## Citation
115
+ If you are using the model, cite using
116
+
117
+ ```
118
+ @article{ravi2024lynx,
119
+ title={Lynx: An Open Source Hallucination Evaluation Model},
120
+ author={Ravi, Selvan Sunitha and Mielczarek, Bartosz and Kannappan, Anand and Kiela, Douwe and Qian, Rebecca},
121
+ journal={arXiv preprint arXiv:2407.08488},
122
+ year={2024}
123
+ }
124
+ ```
125
 
126
  ## Model Card Contact
127
+ [@sunitha-ravi](https://huggingface.co/sunitha-ravi)
128
+ [@RebeccaQian1](https://huggingface.co/RebeccaQian1)
129
+ [@presidev](https://huggingface.co/presidev)