File size: 32,484 Bytes
1faaad3 9e7a67a 1faaad3 8ae08ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import torch
import numpy as np
from comfy.utils import common_upscale
from .utils import log
from einops import rearrange
try:
from server import PromptServer
except:
PromptServer = None
VAE_STRIDE = (4, 8, 8)
PATCH_SIZE = (1, 2, 2)
class WanVideoImageResizeToClosest:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", {"tooltip": "Image to resize"}),
"generation_width": ("INT", {"default": 832, "min": 64, "max": 8096, "step": 8, "tooltip": "Width of the image to encode"}),
"generation_height": ("INT", {"default": 480, "min": 64, "max": 8096, "step": 8, "tooltip": "Height of the image to encode"}),
"aspect_ratio_preservation": (["keep_input", "stretch_to_new", "crop_to_new"],),
},
}
RETURN_TYPES = ("IMAGE", "INT", "INT", )
RETURN_NAMES = ("image","width","height",)
FUNCTION = "process"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Resizes image to the closest supported resolution based on aspect ratio and max pixels, according to the original code"
def process(self, image, generation_width, generation_height, aspect_ratio_preservation ):
H, W = image.shape[1], image.shape[2]
max_area = generation_width * generation_height
crop = "disabled"
if aspect_ratio_preservation == "keep_input":
aspect_ratio = H / W
elif aspect_ratio_preservation == "stretch_to_new" or aspect_ratio_preservation == "crop_to_new":
aspect_ratio = generation_height / generation_width
if aspect_ratio_preservation == "crop_to_new":
crop = "center"
lat_h = round(
np.sqrt(max_area * aspect_ratio) // VAE_STRIDE[1] //
PATCH_SIZE[1] * PATCH_SIZE[1])
lat_w = round(
np.sqrt(max_area / aspect_ratio) // VAE_STRIDE[2] //
PATCH_SIZE[2] * PATCH_SIZE[2])
h = lat_h * VAE_STRIDE[1]
w = lat_w * VAE_STRIDE[2]
resized_image = common_upscale(image.movedim(-1, 1), w, h, "lanczos", crop).movedim(1, -1)
return (resized_image, w, h)
class ExtractStartFramesForContinuations:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_video_frames": ("IMAGE", {"tooltip": "Input video frames to extract the start frames from."}),
"num_frames": ("INT", {"default": 10, "min": 1, "max": 1024, "step": 1, "tooltip": "Number of frames to get from the start of the video."}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("start_frames",)
FUNCTION = "get_start_frames"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Extracts the first N frames from a video sequence for continuations."
def get_start_frames(self, input_video_frames, num_frames):
if input_video_frames is None or input_video_frames.shape[0] == 0:
log.warning("Input video frames are empty. Returning an empty tensor.")
if input_video_frames is not None:
return (torch.empty((0,) + input_video_frames.shape[1:], dtype=input_video_frames.dtype),)
else:
# Return a tensor with 4 dimensions, as expected for an IMAGE type.
return (torch.empty((0, 64, 64, 3), dtype=torch.float32),)
total_frames = input_video_frames.shape[0]
num_to_get = min(num_frames, total_frames)
if num_to_get < num_frames:
log.warning(f"Requested {num_frames} frames, but input video only has {total_frames} frames. Returning first {num_to_get} frames.")
start_frames = input_video_frames[:num_to_get]
return (start_frames.cpu().float(),)
class WanVideoVACEStartToEndFrame:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"num_frames": ("INT", {"default": 81, "min": 1, "max": 10000, "step": 4, "tooltip": "Number of frames to encode"}),
"empty_frame_level": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "White level of empty frame to use"}),
},
"optional": {
"start_image": ("IMAGE",),
"end_image": ("IMAGE",),
"control_images": ("IMAGE",),
"inpaint_mask": ("MASK", {"tooltip": "Inpaint mask to use for the empty frames"}),
"start_index": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1, "tooltip": "Index to start from"}),
"end_index": ("INT", {"default": -1, "min": -10000, "max": 10000, "step": 1, "tooltip": "Index to end at"}),
"control_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01, "tooltip": "How much does the control images apply?"}),
"control_ease": ("INT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 1, "tooltip": "How many frames to ease in the control video?"}),
},
}
RETURN_TYPES = ("IMAGE", "MASK", )
RETURN_NAMES = ("images", "masks",)
FUNCTION = "process"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Helper node to create start/end frame batch and masks for VACE"
def process(self, num_frames, empty_frame_level, start_image=None, end_image=None, control_images=None, inpaint_mask=None, start_index=0, end_index=-1, control_strength=1.0, control_ease=0):
device = start_image.device if start_image is not None else end_image.device
B, H, W, C = start_image.shape if start_image is not None else end_image.shape
if control_images is not None:
# weaken the control images?
if control_strength < 1.0:
# strength happens at much smaller number
control_strength *= 2.0
control_strength = control_strength * control_strength / 8.0
control_images = torch.lerp(torch.ones((control_images.shape[0], control_images.shape[1], control_images.shape[2], control_images.shape[3])) * empty_frame_level, control_images, control_strength)
# ease in control stuff?
if num_frames > control_ease and control_ease > 0:
empty_frame = torch.ones((1, control_images.shape[1], control_images.shape[2], control_images.shape[3])) * empty_frame_level
if start_image is not None:
for i in range(1, control_ease + 1):
control_images[i] = torch.lerp(control_images[i], empty_frame, (control_ease - i) / (1 + control_ease))
else:
for i in range(num_frames - control_ease - 1, num_frames - 1):
control_images[i] = torch.lerp(control_images[i], empty_frame, i / (1 + control_ease))
if start_image is None and end_image is None and control_images is not None:
if control_images.shape[0] >= num_frames:
control_images = control_images[:num_frames]
elif control_images.shape[0] < num_frames:
# padd with empty_frame_level frames
padding = torch.ones((num_frames - control_images.shape[0], control_images.shape[1], control_images.shape[2], control_images.shape[3]), device=control_images.device) * empty_frame_level
control_images = torch.cat([control_images, padding], dim=0)
return (control_images.cpu().float(), torch.zeros_like(control_images[:, :, :, 0]).cpu().float())
# Convert negative end_index to positive
if end_index < 0:
end_index = num_frames + end_index
# Create output batch with empty frames
out_batch = torch.ones((num_frames, H, W, 3), device=device) * empty_frame_level
# Create mask tensor with proper dimensions
masks = torch.ones((num_frames, H, W), device=device)
# Pre-process all images at once to avoid redundant work
if end_image is not None and (end_image.shape[1] != H or end_image.shape[2] != W):
end_image = common_upscale(end_image.movedim(-1, 1), W, H, "lanczos", "disabled").movedim(1, -1)
if control_images is not None and (control_images.shape[1] != H or control_images.shape[2] != W):
control_images = common_upscale(control_images.movedim(-1, 1), W, H, "lanczos", "disabled").movedim(1, -1)
# Place start image at start_index
if start_image is not None:
frames_to_copy = min(start_image.shape[0], num_frames - start_index)
if frames_to_copy > 0:
out_batch[start_index:start_index + frames_to_copy] = start_image[:frames_to_copy]
masks[start_index:start_index + frames_to_copy] = 0
# Place end image at end_index
if end_image is not None:
# Calculate where to start placing end images
end_start = end_index - end_image.shape[0] + 1
if end_start < 0: # Handle case where end images won't all fit
end_image = end_image[abs(end_start):]
end_start = 0
frames_to_copy = min(end_image.shape[0], num_frames - end_start)
if frames_to_copy > 0:
out_batch[end_start:end_start + frames_to_copy] = end_image[:frames_to_copy]
masks[end_start:end_start + frames_to_copy] = 0
# Apply control images to remaining frames that don't have start or end images
if control_images is not None:
# Create a mask of frames that are still empty (mask == 1)
empty_frames = masks.sum(dim=(1, 2)) > 0.5 * H * W
if empty_frames.any():
# Only apply control images where they exist
control_length = control_images.shape[0]
for frame_idx in range(num_frames):
if empty_frames[frame_idx] and frame_idx < control_length:
out_batch[frame_idx] = control_images[frame_idx]
# Apply inpaint mask if provided
if inpaint_mask is not None:
inpaint_mask = common_upscale(inpaint_mask.unsqueeze(1), W, H, "nearest-exact", "disabled").squeeze(1).to(device)
# Handle different mask lengths efficiently
if inpaint_mask.shape[0] > num_frames:
inpaint_mask = inpaint_mask[:num_frames]
elif inpaint_mask.shape[0] < num_frames:
repeat_factor = (num_frames + inpaint_mask.shape[0] - 1) // inpaint_mask.shape[0] # Ceiling division
inpaint_mask = inpaint_mask.repeat(repeat_factor, 1, 1)[:num_frames]
# Apply mask in one operation
masks = inpaint_mask * masks
return (out_batch.cpu().float(), masks.cpu().float())
class CreateCFGScheduleFloatList:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"steps": ("INT", {"default": 30, "min": 2, "max": 1000, "step": 1, "tooltip": "Number of steps to schedule cfg for"} ),
"cfg_scale_start": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 30.0, "step": 0.01, "round": 0.01, "tooltip": "CFG scale to use for the steps"}),
"cfg_scale_end": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 30.0, "step": 0.01, "round": 0.01, "tooltip": "CFG scale to use for the steps"}),
"interpolation": (["linear", "ease_in", "ease_out"], {"default": "linear", "tooltip": "Interpolation method to use for the cfg scale"}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01,"tooltip": "Start percent of the steps to apply cfg"}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01,"tooltip": "End percent of the steps to apply cfg"}),
},
"hidden": {
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("FLOAT", )
RETURN_NAMES = ("float_list",)
FUNCTION = "process"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Helper node to generate a list of floats that can be used to schedule cfg scale for the steps, outside the set range cfg is set to 1.0"
def process(self, steps, cfg_scale_start, cfg_scale_end, interpolation, start_percent, end_percent, unique_id):
# Create a list of floats for the cfg schedule
cfg_list = [1.0] * steps
start_idx = min(int(steps * start_percent), steps - 1)
end_idx = min(int(steps * end_percent), steps - 1)
for i in range(start_idx, end_idx + 1):
if i >= steps:
break
if end_idx == start_idx:
t = 0
else:
t = (i - start_idx) / (end_idx - start_idx)
if interpolation == "linear":
factor = t
elif interpolation == "ease_in":
factor = t * t
elif interpolation == "ease_out":
factor = t * (2 - t)
cfg_list[i] = round(cfg_scale_start + factor * (cfg_scale_end - cfg_scale_start), 2)
# If start_percent > 0, always include the first step
if start_percent > 0:
cfg_list[0] = 1.0
if unique_id and PromptServer is not None:
try:
PromptServer.instance.send_progress_text(
f"{cfg_list}",
unique_id
)
except:
pass
return (cfg_list,)
class CreateScheduleFloatList:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"steps": ("INT", {"default": 30, "min": 2, "max": 1000, "step": 1, "tooltip": "Number of steps to schedule cfg for"} ),
"start_value": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01, "tooltip": "CFG scale to use for the steps"}),
"end_value": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01, "tooltip": "CFG scale to use for the steps"}),
"default_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.01, "round": 0.01, "tooltip": "Default value to use for the steps"}),
"interpolation": (["linear", "ease_in", "ease_out"], {"default": "linear", "tooltip": "Interpolation method to use for the cfg scale"}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01,"tooltip": "Start percent of the steps to apply cfg"}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01,"tooltip": "End percent of the steps to apply cfg"}),
},
"hidden": {
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("FLOAT", )
RETURN_NAMES = ("float_list",)
FUNCTION = "process"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Helper node to generate a list of floats that can be used to schedule things like cfg and lora scale per step"
def process(self, steps, start_value, end_value, default_value,interpolation, start_percent, end_percent, unique_id):
# Create a list of floats for the cfg schedule
cfg_list = [default_value] * steps
start_idx = min(int(steps * start_percent), steps - 1)
end_idx = min(int(steps * end_percent), steps - 1)
for i in range(start_idx, end_idx + 1):
if i >= steps:
break
if end_idx == start_idx:
t = 0
else:
t = (i - start_idx) / (end_idx - start_idx)
if interpolation == "linear":
factor = t
elif interpolation == "ease_in":
factor = t * t
elif interpolation == "ease_out":
factor = t * (2 - t)
cfg_list[i] = round(start_value + factor * (end_value - start_value), 2)
# If start_percent > 0, always include the first step
if start_percent > 0:
cfg_list[0] = default_value
if unique_id and PromptServer is not None:
try:
PromptServer.instance.send_progress_text(
f"{cfg_list}",
unique_id
)
except:
pass
return (cfg_list,)
class DummyComfyWanModelObject:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"shift": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "Sigma shift value"}),
}
}
RETURN_TYPES = ("MODEL", )
RETURN_NAMES = ("model",)
FUNCTION = "create"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Helper node to create empty Wan model to use with BasicScheduler -node to get sigmas"
def create(self, shift):
from comfy.model_sampling import ModelSamplingDiscreteFlow
class DummyModel:
def get_model_object(self, name):
if name == "model_sampling":
model_sampling = ModelSamplingDiscreteFlow()
model_sampling.set_parameters(shift=shift)
return model_sampling
return None
return (DummyModel(),)
class WanVideoLatentReScale:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT",),
"direction": (["comfy_to_wrapper", "wrapper_to_comfy"], {"tooltip": "Direction to rescale latents, from comfy to wrapper or vice versa"}),
}
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "encode"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Rescale latents to match the expected range for encoding or decoding between native ComfyUI VAE and the WanVideoWrapper VAE."
def encode(self, samples, direction):
samples = samples.copy()
latents = samples["samples"]
if latents.shape[1] == 48:
mean = [
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
-0.2246, -0.1207, -0.0698, 0.5109, 0.2665, -0.2108, -0.2158, 0.2502,
-0.2055, -0.0322, 0.1109, 0.1567, -0.0729, 0.0899, -0.2799, -0.1230,
-0.0313, -0.1649, 0.0117, 0.0723, -0.2839, -0.2083, -0.0520, 0.3748,
0.0152, 0.1957, 0.1433, -0.2944, 0.3573, -0.0548, -0.1681, -0.0667,
]
std = [
0.4765, 1.0364, 0.4514, 1.1677, 0.5313, 0.4990, 0.4818, 0.5013,
0.8158, 1.0344, 0.5894, 1.0901, 0.6885, 0.6165, 0.8454, 0.4978,
0.5759, 0.3523, 0.7135, 0.6804, 0.5833, 1.4146, 0.8986, 0.5659,
0.7069, 0.5338, 0.4889, 0.4917, 0.4069, 0.4999, 0.6866, 0.4093,
0.5709, 0.6065, 0.6415, 0.4944, 0.5726, 1.2042, 0.5458, 1.6887,
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
]
else:
mean = [
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]
std = [
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]
mean = torch.tensor(mean).view(1, latents.shape[1], 1, 1, 1)
std = torch.tensor(std).view(1, latents.shape[1], 1, 1, 1)
inv_std = (1.0 / std).view(1, latents.shape[1], 1, 1, 1)
if direction == "comfy_to_wrapper":
latents = (latents - mean.to(latents)) * inv_std.to(latents)
elif direction == "wrapper_to_comfy":
latents = latents / inv_std.to(latents) + mean.to(latents)
samples["samples"] = latents
return (samples,)
class WanVideoSigmaToStep:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sigma": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0, "step": 0.001}),
},
}
RETURN_TYPES = ("INT", )
RETURN_NAMES = ("step",)
FUNCTION = "convert"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Simply passes a float value as an integer, used to set start/end steps with sigma threshold"
def convert(self, sigma):
return (sigma,)
class NormalizeAudioLoudness:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"audio": ("AUDIO",),
"lufs": ("FLOAT", {"default": -23.0, "min": -100.0, "max": 0.0, "step": 0.1, "tool": "Loudness Units relative to Full Scale, higher LUFS values (closer to 0) mean louder audio. Lower LUFS values (more negative) mean quieter audio."}),
},
}
RETURN_TYPES = ("AUDIO", )
RETURN_NAMES = ("audio", )
FUNCTION = "normalize"
CATEGORY = "WanVideoWrapper"
def normalize(self, audio, lufs):
audio_input = audio["waveform"]
sample_rate = audio["sample_rate"]
if audio_input.dim() == 3:
audio_input = audio_input.squeeze(0)
audio_input_np = audio_input.detach().transpose(0, 1).numpy().astype(np.float32)
audio_input_np = np.ascontiguousarray(audio_input_np)
normalized_audio = self.loudness_norm(audio_input_np, sr=sample_rate, lufs=lufs)
out_audio = {"waveform": torch.from_numpy(normalized_audio).transpose(0, 1).unsqueeze(0).float(), "sample_rate": sample_rate}
return (out_audio, )
def loudness_norm(self, audio_array, sr=16000, lufs=-23):
try:
import pyloudnorm
except:
raise ImportError("pyloudnorm package is not installed")
meter = pyloudnorm.Meter(sr)
loudness = meter.integrated_loudness(audio_array)
if abs(loudness) > 100:
return audio_array
normalized_audio = pyloudnorm.normalize.loudness(audio_array, loudness, lufs)
return normalized_audio
class WanVideoPassImagesFromSamples:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT",),
}
}
RETURN_TYPES = ("IMAGE", "STRING",)
RETURN_NAMES = ("images", "output_path",)
OUTPUT_TOOLTIPS = ("Decoded images from the samples dictionary", "Output path if provided in the samples dictionary",)
FUNCTION = "decode"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Gets possible already decoded images from the samples dictionary, used with Multi/InfiniteTalk sampling"
def decode(self, samples):
video = samples.get("video", None)
video.clamp_(-1.0, 1.0)
video.add_(1.0).div_(2.0)
return video.cpu().float(), samples.get("output_path", "")
class FaceMaskFromPoseKeypoints:
@classmethod
def INPUT_TYPES(s):
input_types = {
"required": {
"pose_kps": ("POSE_KEYPOINT",),
"person_index": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1, "tooltip": "Index of the person to start with"}),
}
}
return input_types
RETURN_TYPES = ("MASK",)
FUNCTION = "createmask"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def createmask(self, pose_kps, person_index):
pose_frames = pose_kps
prev_center = None
np_frames = []
for i, pose_frame in enumerate(pose_frames):
selected_idx, prev_center = self.select_closest_person(pose_frame, person_index if i == 0 else prev_center)
np_frames.append(self.draw_kps(pose_frame, selected_idx))
if not np_frames:
# Handle case where no frames were processed
log.warning("No valid pose frames found, returning empty mask")
return (torch.zeros((1, 64, 64), dtype=torch.float32),)
np_frames = np.stack(np_frames, axis=0)
tensor = torch.from_numpy(np_frames).float() / 255.
print("tensor.shape:", tensor.shape)
tensor = tensor[:, :, :, 0]
return (tensor,)
def select_closest_person(self, pose_frame, prev_center_or_index):
people = pose_frame["people"]
if not people:
return -1, None
centers = []
valid_people_indices = []
for idx, person in enumerate(people):
# Check if face keypoints exist and are valid
if "face_keypoints_2d" not in person or not person["face_keypoints_2d"]:
continue
kps = np.array(person["face_keypoints_2d"])
if len(kps) == 0:
continue
n = len(kps) // 3
if n == 0:
continue
facial_kps = rearrange(kps, "(n c) -> n c", n=n, c=3)[:, :2]
# Check if we have valid coordinates (not all zeros)
if np.all(facial_kps == 0):
continue
center = facial_kps.mean(axis=0)
# Check if center is valid (not NaN or infinite)
if np.isnan(center).any() or np.isinf(center).any():
continue
centers.append(center)
valid_people_indices.append(idx)
if not centers:
return -1, None
if isinstance(prev_center_or_index, (int, np.integer)):
# First frame: use person_index, but map to valid people
if 0 <= prev_center_or_index < len(valid_people_indices):
idx = valid_people_indices[prev_center_or_index]
return idx, centers[prev_center_or_index]
elif valid_people_indices:
# Fallback to first valid person
idx = valid_people_indices[0]
return idx, centers[0]
else:
return -1, None
elif prev_center_or_index is not None:
# Find closest to previous center
prev_center = np.array(prev_center_or_index)
dists = [np.linalg.norm(center - prev_center) for center in centers]
min_idx = int(np.argmin(dists))
actual_idx = valid_people_indices[min_idx]
return actual_idx, centers[min_idx]
else:
# prev_center_or_index is None, fallback to first valid person
if valid_people_indices:
idx = valid_people_indices[0]
return idx, centers[0]
else:
return -1, None
def draw_kps(self, pose_frame, person_index):
import cv2
width, height = pose_frame["canvas_width"], pose_frame["canvas_height"]
canvas = np.zeros((height, width, 3), dtype=np.uint8)
people = pose_frame["people"]
if person_index < 0 or person_index >= len(people):
return canvas # Out of bounds, return blank
person = people[person_index]
# Check if face keypoints exist and are valid
if "face_keypoints_2d" not in person or not person["face_keypoints_2d"]:
return canvas # No face keypoints, return blank
face_kps_data = person["face_keypoints_2d"]
if len(face_kps_data) == 0:
return canvas # Empty keypoints, return blank
n = len(face_kps_data) // 3
if n < 17: # Need at least 17 points for outer contour
return canvas # Not enough keypoints, return blank
facial_kps = rearrange(np.array(face_kps_data), "(n c) -> n c", n=n, c=3)[:, :2]
# Check if we have valid coordinates (not all zeros)
if np.all(facial_kps == 0):
return canvas # All keypoints are zero, return blank
# Check for NaN or infinite values
if np.isnan(facial_kps).any() or np.isinf(facial_kps).any():
return canvas # Invalid coordinates, return blank
# Check for negative coordinates or coordinates that would create streaks
if np.any(facial_kps < 0):
return canvas # Negative coordinates, likely bad detection
# Check if coordinates are reasonable (not too close to edges which might indicate bad detection)
min_margin = 5 # Minimum distance from edges
if (np.any(facial_kps[:, 0] < min_margin) or
np.any(facial_kps[:, 1] < min_margin) or
np.any(facial_kps[:, 0] > width - min_margin) or
np.any(facial_kps[:, 1] > height - min_margin)):
# Check if this looks like a streak to corner (many points near 0,0)
corner_points = np.sum((facial_kps[:, 0] < min_margin) & (facial_kps[:, 1] < min_margin))
if corner_points > 3: # Too many points near corner, likely bad detection
return canvas
facial_kps = facial_kps.astype(np.int32)
# Ensure coordinates are within canvas bounds
facial_kps[:, 0] = np.clip(facial_kps[:, 0], 0, width - 1)
facial_kps[:, 1] = np.clip(facial_kps[:, 1], 0, height - 1)
part_color = (255, 255, 255)
outer_contour = facial_kps[:17]
# Additional validation for the contour before drawing
# Check if contour points are too spread out (indicating bad detection)
if len(outer_contour) >= 3:
# Calculate bounding box of the contour
min_x, min_y = np.min(outer_contour, axis=0)
max_x, max_y = np.max(outer_contour, axis=0)
contour_width = max_x - min_x
contour_height = max_y - min_y
# If contour spans more than 80% of canvas, likely bad detection
if (contour_width > 0.8 * width or contour_height > 0.8 * height):
return canvas
# Check if we have a valid contour (at least 3 unique points)
unique_points = np.unique(outer_contour, axis=0)
if len(unique_points) >= 3:
# Final check: ensure the contour is reasonable
# Calculate area to see if it's too large or too small
contour_area = cv2.contourArea(outer_contour)
canvas_area = width * height
# If contour is less than 0.1% or more than 50% of canvas, skip
if 0.001 * canvas_area <= contour_area <= 0.5 * canvas_area:
cv2.fillPoly(canvas, pts=[outer_contour], color=part_color)
return canvas
NODE_CLASS_MAPPINGS = {
"WanVideoImageResizeToClosest": WanVideoImageResizeToClosest,
"WanVideoVACEStartToEndFrame": WanVideoVACEStartToEndFrame,
"ExtractStartFramesForContinuations": ExtractStartFramesForContinuations,
"CreateCFGScheduleFloatList": CreateCFGScheduleFloatList,
"DummyComfyWanModelObject": DummyComfyWanModelObject,
"WanVideoLatentReScale": WanVideoLatentReScale,
"CreateScheduleFloatList": CreateScheduleFloatList,
"WanVideoSigmaToStep": WanVideoSigmaToStep,
"NormalizeAudioLoudness": NormalizeAudioLoudness,
"WanVideoPassImagesFromSamples": WanVideoPassImagesFromSamples,
"FaceMaskFromPoseKeypoints": FaceMaskFromPoseKeypoints,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"WanVideoImageResizeToClosest": "WanVideo Image Resize To Closest",
"WanVideoVACEStartToEndFrame": "WanVideo VACE Start To End Frame",
"ExtractStartFramesForContinuations": "Extract Start Frames For Continuations",
"CreateCFGScheduleFloatList": "Create CFG Schedule Float List",
"DummyComfyWanModelObject": "Dummy Comfy Wan Model Object",
"WanVideoLatentReScale": "WanVideo Latent ReScale",
"CreateScheduleFloatList": "Create Schedule Float List",
"WanVideoSigmaToStep": "WanVideo Sigma To Step",
"NormalizeAudioLoudness": "Normalize Audio Loudness",
"WanVideoPassImagesFromSamples": "WanVideo Pass Images From Samples",
"FaceMaskFromPoseKeypoints": "Face Mask From Pose Keypoints",
} |