--- tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:3190 - loss:ListNetLoss base_model: ProsusAI/finbert pipeline_tag: text-ranking library_name: sentence-transformers --- # CrossEncoder based on ProsusAI/finbert This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("Pranjal2002/finbert_new_v2") # Get scores for pairs of texts pairs = [ ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '10-K'], ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', 'Earnings'], ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', 'DEF14A'], ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '8-K'], ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '10-Q'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', [ '10-K', 'Earnings', 'DEF14A', '8-K', '10-Q', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 3,190 training samples * Columns: query, docs, and labels * Approximate statistics based on the first 1000 samples: | | query | docs | labels | |:--------|:-------------------------------------------------------------------------------------------------|:-----------------------------------|:-----------------------------------| | type | string | list | list | | details | | | | * Samples: | query | docs | labels | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------|:-----------------------------| | What year over year growth rate was shown for paid memberships in the same table | ['10-Q', '10-K', '8-K', 'Earnings', 'DEF14A'] | [4, 3, 2, 1, 0] | | How did non‑GAAP EPS growth align with the incentive metrics set for management? | ['DEF14A', '8-K', '10-K', '10-Q', 'Earnings'] | [2, 1, 0, 0, 0] | | What questions were raised regarding Xcel Energy Inc.’s risk factors and mitigation plans related to the integration of renewable energy sources into their grid? | ['10-K', 'Earnings', '8-K', '10-Q', 'DEF14A'] | [4, 3, 2, 1, 0] | * Loss: [ListNetLoss](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 798 evaluation samples * Columns: query, docs, and labels * Approximate statistics based on the first 798 samples: | | query | docs | labels | |:--------|:-------------------------------------------------------------------------------------------------|:-----------------------------------|:-----------------------------------| | type | string | list | list | | details | | | | * Samples: | query | docs | labels | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------|:-----------------------------| | What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations? | ['10-K', 'Earnings', 'DEF14A', '8-K', '10-Q'] | [4, 3, 2, 1, 0] | | How does Pentair manage equity award burn rate or share pool availability? | ['10-K', 'DEF14A', '10-Q', 'Earnings', '8-K'] | [4, 3, 2, 1, 0] | | What key takeaways emerged from Valero Energy Corporation’s most recent earnings announcement? | ['10-Q', '10-K', 'Earnings', '8-K', 'DEF14A'] | [4, 3, 2, 1, 0] | * Loss: [ListNetLoss](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `gradient_accumulation_steps`: 2 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `warmup_steps`: 100 - `bf16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 100 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:---------:|:-------:|:-------------:|:---------------:| | 0.1253 | 50 | 1.5705 | - | | 0.2506 | 100 | 1.4843 | - | | 0.3759 | 150 | 1.441 | - | | 0.5013 | 200 | 1.3953 | 1.4013 | | 0.6266 | 250 | 1.3738 | - | | 0.7519 | 300 | 1.3781 | - | | 0.8772 | 350 | 1.4106 | - | | 1.0025 | 400 | 1.3318 | 1.4033 | | 1.1278 | 450 | 1.3641 | - | | 1.2531 | 500 | 1.3413 | - | | 1.3784 | 550 | 1.3485 | - | | 1.5038 | 600 | 1.3096 | 1.3498 | | 1.6291 | 650 | 1.3473 | - | | 1.7544 | 700 | 1.3594 | - | | 1.8797 | 750 | 1.3418 | - | | **2.005** | **800** | **1.3479** | **1.3386** | | 2.1303 | 850 | 1.3276 | - | | 2.2556 | 900 | 1.3361 | - | | 2.3810 | 950 | 1.3086 | - | | 2.5063 | 1000 | 1.3005 | 1.3472 | | 2.6316 | 1050 | 1.3195 | - | | 2.7569 | 1100 | 1.3199 | - | | 2.8822 | 1150 | 1.3207 | - | | 3.0075 | 1200 | 1.3216 | 1.3496 | | 3.1328 | 1250 | 1.2914 | - | | 3.2581 | 1300 | 1.3086 | - | | 3.3835 | 1350 | 1.2737 | - | | 3.5088 | 1400 | 1.3238 | 1.3380 | | 3.6341 | 1450 | 1.3041 | - | | 3.7594 | 1500 | 1.3069 | - | | 3.8847 | 1550 | 1.2787 | - | | 4.0100 | 1600 | 1.2927 | 1.3569 | | 4.1353 | 1650 | 1.2927 | - | | 4.2607 | 1700 | 1.2703 | - | | 4.3860 | 1750 | 1.2783 | - | | 4.5113 | 1800 | 1.2924 | 1.3532 | | 4.6366 | 1850 | 1.2693 | - | | 4.7619 | 1900 | 1.2819 | - | | 4.8872 | 1950 | 1.2753 | - | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.11 - Sentence Transformers: 5.1.0 - Transformers: 4.56.1 - PyTorch: 2.8.0+cu126 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ListNetLoss ```bibtex @inproceedings{cao2007learning, title={Learning to Rank: From Pairwise Approach to Listwise Approach}, author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang}, booktitle={Proceedings of the 24th international conference on Machine learning}, pages={129--136}, year={2007} } ```