Update README.md
Browse files
README.md
CHANGED
|
@@ -180,55 +180,134 @@ Output: "deoxyribonucleic acid, and it is the hereditary material in all living
|
|
| 180 |
|
| 181 |
## Usage
|
| 182 |
|
| 183 |
-
### Basic Usage
|
| 184 |
```python
|
| 185 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
| 188 |
model = AutoModelForCausalLM.from_pretrained(
|
| 189 |
-
|
| 190 |
-
torch_dtype=
|
| 191 |
-
device_map="auto"
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
)
|
| 194 |
-
tokenizer = AutoTokenizer.from_pretrained("Qwen3-72B-Embiggened")
|
| 195 |
|
| 196 |
-
#
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
```
|
| 201 |
|
| 202 |
-
###
|
| 203 |
```python
|
| 204 |
-
|
| 205 |
|
| 206 |
-
#
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
| 211 |
)
|
|
|
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
| 218 |
)
|
| 219 |
```
|
| 220 |
|
| 221 |
-
###
|
| 222 |
```python
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
```
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
## Hardware Requirements
|
| 233 |
|
| 234 |
### Minimum Requirements
|
|
|
|
| 180 |
|
| 181 |
## Usage
|
| 182 |
|
| 183 |
+
### Basic Usage with Thinking Mode
|
| 184 |
```python
|
| 185 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 186 |
|
| 187 |
+
model_name = "cognitivecomputations/Qwen3-72B-Embiggened"
|
| 188 |
+
|
| 189 |
+
# Load the tokenizer and the model
|
| 190 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 191 |
model = AutoModelForCausalLM.from_pretrained(
|
| 192 |
+
model_name,
|
| 193 |
+
torch_dtype="auto",
|
| 194 |
+
device_map="auto"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Prepare the model input
|
| 198 |
+
prompt = "How many r's are in strawberry?"
|
| 199 |
+
messages = [
|
| 200 |
+
{"role": "user", "content": prompt}
|
| 201 |
+
]
|
| 202 |
+
|
| 203 |
+
# Apply chat template with thinking mode enabled
|
| 204 |
+
text = tokenizer.apply_chat_template(
|
| 205 |
+
messages,
|
| 206 |
+
tokenize=False,
|
| 207 |
+
add_generation_prompt=True,
|
| 208 |
+
enable_thinking=True # Enable thinking mode (default)
|
| 209 |
+
)
|
| 210 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 211 |
+
|
| 212 |
+
# Generate response
|
| 213 |
+
generated_ids = model.generate(
|
| 214 |
+
**model_inputs,
|
| 215 |
+
max_new_tokens=32768,
|
| 216 |
+
temperature=0.6, # Recommended for thinking mode
|
| 217 |
+
top_p=0.95,
|
| 218 |
+
top_k=20,
|
| 219 |
+
min_p=0
|
| 220 |
)
|
|
|
|
| 221 |
|
| 222 |
+
# Parse thinking content and final response
|
| 223 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 224 |
+
|
| 225 |
+
try:
|
| 226 |
+
# Find </think> token (151668)
|
| 227 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
| 228 |
+
except ValueError:
|
| 229 |
+
index = 0
|
| 230 |
+
|
| 231 |
+
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
| 232 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
| 233 |
+
|
| 234 |
+
print("Thinking content:", thinking_content)
|
| 235 |
+
print("Final answer:", content)
|
| 236 |
```
|
| 237 |
|
| 238 |
+
### Non-Thinking Mode (Efficient General Dialogue)
|
| 239 |
```python
|
| 240 |
+
# Same setup as above...
|
| 241 |
|
| 242 |
+
# Apply chat template with thinking mode disabled
|
| 243 |
+
text = tokenizer.apply_chat_template(
|
| 244 |
+
messages,
|
| 245 |
+
tokenize=False,
|
| 246 |
+
add_generation_prompt=True,
|
| 247 |
+
enable_thinking=False # Disable thinking for efficiency
|
| 248 |
)
|
| 249 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 250 |
|
| 251 |
+
# Generate with non-thinking parameters
|
| 252 |
+
outputs = model.generate(
|
| 253 |
+
**model_inputs,
|
| 254 |
+
max_new_tokens=2048,
|
| 255 |
+
temperature=0.7, # Recommended for non-thinking mode
|
| 256 |
+
top_p=0.8,
|
| 257 |
+
top_k=20,
|
| 258 |
+
min_p=0
|
| 259 |
)
|
| 260 |
```
|
| 261 |
|
| 262 |
+
### Advanced: Dynamic Mode Switching
|
| 263 |
```python
|
| 264 |
+
# Use /think and /no_think tags to control behavior
|
| 265 |
+
messages = [
|
| 266 |
+
{"role": "user", "content": "Explain quantum computing /no_think"}, # Quick response
|
| 267 |
+
{"role": "assistant", "content": "Quantum computing uses quantum bits..."},
|
| 268 |
+
{"role": "user", "content": "How does superposition work mathematically? /think"} # Detailed reasoning
|
| 269 |
+
]
|
| 270 |
+
```
|
| 271 |
|
| 272 |
+
### vLLM Deployment with Reasoning Support
|
| 273 |
+
```python
|
| 274 |
+
# Start server with reasoning parser
|
| 275 |
+
# vllm serve cognitivecomputations/Qwen3-72B-Embiggened --enable-reasoning --reasoning-parser deepseek_r1
|
| 276 |
+
|
| 277 |
+
from openai import OpenAI
|
| 278 |
+
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
|
| 279 |
|
| 280 |
+
# Use with thinking mode
|
| 281 |
+
response = client.chat.completions.create(
|
| 282 |
+
model="cognitivecomputations/Qwen3-72B-Embiggened",
|
| 283 |
+
messages=[{"role": "user", "content": "Solve: What is 15% of 250?"}],
|
| 284 |
+
extra_body={"enable_thinking": True}
|
| 285 |
+
)
|
| 286 |
```
|
| 287 |
|
| 288 |
+
### Example Outputs with Thinking
|
| 289 |
+
|
| 290 |
+
```
|
| 291 |
+
Prompt: "How many r's are in strawberry?"
|
| 292 |
+
Thinking: Let me count the r's in "strawberry". S-t-r-a-w-b-e-r-r-y.
|
| 293 |
+
Going through each letter: s(no), t(no), r(yes, 1), a(no), w(no),
|
| 294 |
+
b(no), e(no), r(yes, 2), r(yes, 3), y(no).
|
| 295 |
+
Final answer: There are 3 r's in the word "strawberry".
|
| 296 |
+
|
| 297 |
+
Prompt: "What is the capital of France, and what is it famous for?"
|
| 298 |
+
Final answer (no thinking): Paris is the capital of France. It's famous for
|
| 299 |
+
the Eiffel Tower, the Louvre Museum, Notre-Dame Cathedral, and its rich
|
| 300 |
+
cultural heritage, fashion, and cuisine.
|
| 301 |
+
```
|
| 302 |
+
|
| 303 |
+
This updated version:
|
| 304 |
+
1. Shows both thinking and non-thinking modes clearly
|
| 305 |
+
2. Includes the proper thinking token parsing (151668)
|
| 306 |
+
3. Uses recommended temperature settings for each mode
|
| 307 |
+
4. Demonstrates the `/think` and `/no_think` switches
|
| 308 |
+
5. Shows example outputs that highlight the thinking capability
|
| 309 |
+
6. Matches the structure and style of the Qwen3-32B examples
|
| 310 |
+
|
| 311 |
## Hardware Requirements
|
| 312 |
|
| 313 |
### Minimum Requirements
|