RawanAlwadeya commited on
Commit
28b4889
·
verified ·
1 Parent(s): a84b8ef

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: keras
3
+ license: mit
4
+ language:
5
+ - en
6
+ pipeline_tag: image-classification
7
+ tags:
8
+ - cnn
9
+ - medical-imaging
10
+ - diabetic-retinopathy
11
+ - transfer-learning
12
+ - efficientnet
13
+ - keras
14
+ - tensorflow
15
+ - deep-learning
16
+ datasets:
17
+ - diagnosis-of-diabetic-retinopathy
18
+ metrics:
19
+ - accuracy
20
+ - precision
21
+ - recall
22
+ - f1
23
+ base_model:
24
+ - google/efficientnet-b3
25
+ ---
26
+
27
+ # Model Card for TransferLearningDR: Diabetic Retinopathy Detector
28
+
29
+ **TransferLearningDR** is a convolutional neural network (CNN) model built on **EfficientNetB3** and trained to classify retinal fundus images into two categories: **No DR** and **Diabetic Retinopathy (DR)**. The model leverages **transfer learning** from ImageNet weights to accelerate training and improve generalization.
30
+
31
+ > ⚠️ **Disclaimer:** This model is intended **for research and educational purposes only**. It is **not a substitute for professional medical diagnosis**. Always consult a licensed healthcare provider for medical decisions.
32
+
33
+ ---
34
+
35
+ ## **Model Details**
36
+
37
+ **Key Features:**
38
+ - Binary classification of retinal images (**No DR vs DR**)
39
+ - Transfer learning using **EfficientNetB3** pretrained on ImageNet
40
+ - Input size: 224x224 RGB images, normalized
41
+ - Custom dense head with batch normalization, dropout, and L1/L2 regularization
42
+ - Evaluated on separate validation and test sets with high accuracy
43
+
44
+ **Skills & Technologies Used:**
45
+ - TensorFlow / Keras for model design & training
46
+ - ImageDataGenerator for preprocessing and optional augmentation
47
+ - EfficientNetB3 for feature extraction
48
+ - Matplotlib & Seaborn for visualization
49
+ - Hugging Face Hub for model hosting
50
+ - Kaggle for dataset and training environment
51
+
52
+ ---
53
+
54
+ - **Developed by:** [Rawan Alwadeya](https://www.linkedin.com/in/rawan-alwadeya-17948a305/)
55
+ - **Model type:** Convolutional Neural Network (CNN) with Transfer Learning
56
+ - **Language(s):** N/A (Image model)
57
+ - **License:** MIT
58
+
59
+ ---
60
+
61
+ ## **Uses**
62
+
63
+ This model can be used for:
64
+ - Research in **diabetic retinopathy detection** and AI-assisted diagnosis
65
+ - Educational demonstrations of transfer learning on medical images
66
+ - Portfolio projects showcasing preprocessing, model training, and deployment
67
+
68
+ ---
69
+
70
+ ### **Example Usage**
71
+
72
+ ```python
73
+ import numpy as np
74
+ from keras.models import load_model
75
+ from PIL import Image
76
+ import requests
77
+ from io import BytesIO
78
+ from huggingface_hub import hf_hub_download
79
+
80
+ # Load the model from Hugging Face Hub
81
+ model_path = hf_hub_download(repo_id="RawanAlwadeya/TransferLearningDR", filename="TransferLearningDR.h5")
82
+ model = load_model(model_path)
83
+
84
+ # Preprocess an example image
85
+ def preprocess_image(image):
86
+ IMG_SIZE = (224, 224)
87
+ image = image.convert("RGB")
88
+ image = image.resize(IMG_SIZE)
89
+ img_array = np.array(image) / 255.0
90
+ img_array = np.expand_dims(img_array, axis=0) # add batch dimension
91
+ return img_array
92
+
93
+ # Example: load an image from URL
94
+ url = "https://example.com/sample_fundus.jpg"
95
+ response = requests.get(url)
96
+ image = Image.open(BytesIO(response.content))
97
+
98
+ img_array = preprocess_image(image)
99
+ prediction = model.predict(img_array)[0][0]
100
+
101
+ if prediction >= 0.5:
102
+ print("⚠️ Diabetic Retinopathy likely detected")
103
+ else:
104
+ print("✅ Likely No DR")