Update README.md (#1)
Browse files- Update README.md (267d95506cb0128348ebd8fa11d8c5466d176bae)
- Update README.md (2dbb8c7bf9e0d339147db6187bc4b0e7113c46fe)
Co-authored-by: Jenny Y <[email protected]>
README.md
CHANGED
|
@@ -19,7 +19,14 @@ tags:
|
|
| 19 |
- transformers
|
| 20 |
---
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
Mistral Small 3 ( 2501 ) sets a new benchmark in the "small" Large Language Models category below 70B, boasting 24B parameters and achieving state-of-the-art capabilities comparable to larger models!
|
| 25 |
This model is an instruction-fine-tuned version of the base model: [Mistral-Small-24B-Base-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Base-2501).
|
|
@@ -113,6 +120,168 @@ The model can be used with the following frameworks;
|
|
| 113 |
- [`vllm`](https://github.com/vllm-project/vllm): See [here](#vllm)
|
| 114 |
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
### vLLM
|
| 117 |
|
| 118 |
We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
|
|
|
|
| 19 |
- transformers
|
| 20 |
---
|
| 21 |
|
| 22 |
+
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
|
| 23 |
+
Mistral-Small-24B-Instruct-2501
|
| 24 |
+
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
|
| 25 |
+
</h1>
|
| 26 |
+
|
| 27 |
+
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
|
| 28 |
+
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
|
| 29 |
+
</a>
|
| 30 |
|
| 31 |
Mistral Small 3 ( 2501 ) sets a new benchmark in the "small" Large Language Models category below 70B, boasting 24B parameters and achieving state-of-the-art capabilities comparable to larger models!
|
| 32 |
This model is an instruction-fine-tuned version of the base model: [Mistral-Small-24B-Base-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Base-2501).
|
|
|
|
| 120 |
- [`vllm`](https://github.com/vllm-project/vllm): See [here](#vllm)
|
| 121 |
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
|
| 122 |
|
| 123 |
+
<details>
|
| 124 |
+
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
|
| 125 |
+
|
| 126 |
+
```bash
|
| 127 |
+
$ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
|
| 128 |
+
--ipc=host \
|
| 129 |
+
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
| 130 |
+
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
|
| 131 |
+
--name=vllm \
|
| 132 |
+
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
|
| 133 |
+
vllm serve \
|
| 134 |
+
--tensor-parallel-size 8 \
|
| 135 |
+
--max-model-len 32768 \
|
| 136 |
+
--enforce-eager --model RedHatAI/Mistral-Small-24B-Instruct-2501
|
| 137 |
+
```
|
| 138 |
+
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
|
| 139 |
+
</details>
|
| 140 |
+
|
| 141 |
+
<details>
|
| 142 |
+
<summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary>
|
| 143 |
+
|
| 144 |
+
```bash
|
| 145 |
+
# Download model from Red Hat Registry via docker
|
| 146 |
+
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
|
| 147 |
+
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-24b-instruct-2501:1.5
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
```bash
|
| 151 |
+
# Serve model via ilab
|
| 152 |
+
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-24b-instruct-2501 --gpu 1 -- --tokenizer-mode "mistral" --config-format "mistral" --load-format "mistral" --tool-call-parser "mistral" --enable-auto-tool-choice --limit-mm-per-prompt "image=10" --max-model-len 16384 --uvicorn-log-level "debug" --trust-remote-code
|
| 153 |
+
|
| 154 |
+
# Chat with model
|
| 155 |
+
ilab model chat --model ~/.cache/instructlab/models/mistral-small-24b-instruct-2501
|
| 156 |
+
```
|
| 157 |
+
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
|
| 158 |
+
</details>
|
| 159 |
+
|
| 160 |
+
<details>
|
| 161 |
+
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
|
| 162 |
+
|
| 163 |
+
```python
|
| 164 |
+
# Setting up vllm server with ServingRuntime
|
| 165 |
+
# Save as: vllm-servingruntime.yaml
|
| 166 |
+
apiVersion: serving.kserve.io/v1alpha1
|
| 167 |
+
kind: ServingRuntime
|
| 168 |
+
metadata:
|
| 169 |
+
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
|
| 170 |
+
annotations:
|
| 171 |
+
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
|
| 172 |
+
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
|
| 173 |
+
labels:
|
| 174 |
+
opendatahub.io/dashboard: 'true'
|
| 175 |
+
spec:
|
| 176 |
+
annotations:
|
| 177 |
+
prometheus.io/port: '8080'
|
| 178 |
+
prometheus.io/path: '/metrics'
|
| 179 |
+
multiModel: false
|
| 180 |
+
supportedModelFormats:
|
| 181 |
+
- autoSelect: true
|
| 182 |
+
name: vLLM
|
| 183 |
+
containers:
|
| 184 |
+
- name: kserve-container
|
| 185 |
+
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
|
| 186 |
+
command:
|
| 187 |
+
- python
|
| 188 |
+
- -m
|
| 189 |
+
- vllm.entrypoints.openai.api_server
|
| 190 |
+
args:
|
| 191 |
+
- "--port=8080"
|
| 192 |
+
- "--model=/mnt/models"
|
| 193 |
+
- "--served-model-name={{.Name}}"
|
| 194 |
+
env:
|
| 195 |
+
- name: HF_HOME
|
| 196 |
+
value: /tmp/hf_home
|
| 197 |
+
ports:
|
| 198 |
+
- containerPort: 8080
|
| 199 |
+
protocol: TCP
|
| 200 |
+
```
|
| 201 |
+
|
| 202 |
+
```python
|
| 203 |
+
# Attach model to vllm server. This is an NVIDIA template
|
| 204 |
+
# Save as: inferenceservice.yaml
|
| 205 |
+
apiVersion: serving.kserve.io/v1beta1
|
| 206 |
+
kind: InferenceService
|
| 207 |
+
metadata:
|
| 208 |
+
annotations:
|
| 209 |
+
openshift.io/display-name: Mistral-Small-24B-Instruct-2501 # OPTIONAL CHANGE
|
| 210 |
+
serving.kserve.io/deploymentMode: RawDeployment
|
| 211 |
+
name: Mistral-Small-24B-Instruct-2501 # specify model name. This value will be used to invoke the model in the payload
|
| 212 |
+
labels:
|
| 213 |
+
opendatahub.io/dashboard: 'true'
|
| 214 |
+
spec:
|
| 215 |
+
predictor:
|
| 216 |
+
maxReplicas: 1
|
| 217 |
+
minReplicas: 1
|
| 218 |
+
model:
|
| 219 |
+
args:
|
| 220 |
+
- "--tokenizer-mode=mistral"
|
| 221 |
+
- "--config-format=mistral"
|
| 222 |
+
- "--load-format=mistral"
|
| 223 |
+
- "--tool-call-parser=mistral"
|
| 224 |
+
- "--enable-auto-tool-choice"
|
| 225 |
+
- "--limit-mm-per-prompt=image=10"
|
| 226 |
+
- "--max-model-len=16384"
|
| 227 |
+
- "--uvicorn-log-level=debug"
|
| 228 |
+
- "--trust-remote-code"
|
| 229 |
+
|
| 230 |
+
modelFormat:
|
| 231 |
+
name: vLLM
|
| 232 |
+
name: ''
|
| 233 |
+
resources:
|
| 234 |
+
limits:
|
| 235 |
+
cpu: '2' # this is model specific
|
| 236 |
+
memory: 8Gi # this is model specific
|
| 237 |
+
nvidia.com/gpu: '1' # this is accelerator specific
|
| 238 |
+
requests: # same comment for this block
|
| 239 |
+
cpu: '1'
|
| 240 |
+
memory: 4Gi
|
| 241 |
+
nvidia.com/gpu: '1'
|
| 242 |
+
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
|
| 243 |
+
storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-24b-instruct-2501:1.5
|
| 244 |
+
tolerations:
|
| 245 |
+
- effect: NoSchedule
|
| 246 |
+
key: nvidia.com/gpu
|
| 247 |
+
operator: Exists
|
| 248 |
+
```
|
| 249 |
+
|
| 250 |
+
```bash
|
| 251 |
+
# make sure first to be in the project where you want to deploy the model
|
| 252 |
+
# oc project <project-name>
|
| 253 |
+
# apply both resources to run model
|
| 254 |
+
# Apply the ServingRuntime
|
| 255 |
+
oc apply -f vllm-servingruntime.yaml
|
| 256 |
+
# Apply the InferenceService
|
| 257 |
+
oc apply -f qwen-inferenceservice.yaml
|
| 258 |
+
```
|
| 259 |
+
|
| 260 |
+
```python
|
| 261 |
+
# Replace <inference-service-name> and <cluster-ingress-domain> below:
|
| 262 |
+
# - Run `oc get inferenceservice` to find your URL if unsure.
|
| 263 |
+
# Call the server using curl:
|
| 264 |
+
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
|
| 265 |
+
-H "Content-Type: application/json" \
|
| 266 |
+
-d '{
|
| 267 |
+
"model": "Mistral-Small-24B-Instruct-2501",
|
| 268 |
+
"stream": true,
|
| 269 |
+
"stream_options": {
|
| 270 |
+
"include_usage": true
|
| 271 |
+
},
|
| 272 |
+
"max_tokens": 1,
|
| 273 |
+
"messages": [
|
| 274 |
+
{
|
| 275 |
+
"role": "user",
|
| 276 |
+
"content": "How can a bee fly when its wings are so small?"
|
| 277 |
+
}
|
| 278 |
+
]
|
| 279 |
+
}'
|
| 280 |
+
```
|
| 281 |
+
|
| 282 |
+
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
|
| 283 |
+
</details>
|
| 284 |
+
|
| 285 |
### vLLM
|
| 286 |
|
| 287 |
We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
|