Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
base_model:
|
| 6 |
+
- Qwen/Qwen3-4B
|
| 7 |
+
tags:
|
| 8 |
+
- neuralmagic
|
| 9 |
+
- redhat
|
| 10 |
+
- llmcompressor
|
| 11 |
+
- quantized
|
| 12 |
+
- INT4
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Qwen3-4B-quantized.w4a16
|
| 16 |
+
|
| 17 |
+
## Model Overview
|
| 18 |
+
- **Model Architecture:** Qwen3ForCausalLM
|
| 19 |
+
- **Input:** Text
|
| 20 |
+
- **Output:** Text
|
| 21 |
+
- **Model Optimizations:**
|
| 22 |
+
- **Weight quantization:** INT4
|
| 23 |
+
- **Intended Use Cases:**
|
| 24 |
+
- Reasoning.
|
| 25 |
+
- Function calling.
|
| 26 |
+
- Subject matter experts via fine-tuning.
|
| 27 |
+
- Multilingual instruction following.
|
| 28 |
+
- Translation.
|
| 29 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
|
| 30 |
+
- **Release Date:** 05/05/2025
|
| 31 |
+
- **Version:** 1.0
|
| 32 |
+
- **Model Developers:** RedHat (Neural Magic)
|
| 33 |
+
|
| 34 |
+
### Model Optimizations
|
| 35 |
+
|
| 36 |
+
This model was obtained by quantizing the weights of [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) to INT4 data type.
|
| 37 |
+
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
|
| 38 |
+
|
| 39 |
+
Only the weights of the linear operators within transformers blocks are quantized.
|
| 40 |
+
Weights are quantized using a asymmetric per-group scheme, with group size 64.
|
| 41 |
+
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Deployment
|
| 45 |
+
|
| 46 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from vllm import LLM, SamplingParams
|
| 50 |
+
from transformers import AutoTokenizer
|
| 51 |
+
|
| 52 |
+
model_id = "RedHatAI/Qwen3-4B-quantized.w4a16"
|
| 53 |
+
number_gpus = 1
|
| 54 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
|
| 55 |
+
|
| 56 |
+
messages = [
|
| 57 |
+
{"role": "user", "content": prompt}
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 61 |
+
|
| 62 |
+
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
|
| 63 |
+
|
| 64 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
| 65 |
+
|
| 66 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
| 67 |
+
|
| 68 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 69 |
+
|
| 70 |
+
generated_text = outputs[0].outputs[0].text
|
| 71 |
+
print(generated_text)
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
| 75 |
+
|
| 76 |
+
## Creation
|
| 77 |
+
|
| 78 |
+
<details>
|
| 79 |
+
<summary>Creation details</summary>
|
| 80 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
| 85 |
+
from llmcompressor.transformers import oneshot
|
| 86 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 87 |
+
|
| 88 |
+
# Load model
|
| 89 |
+
model_stub = "Qwen/Qwen3-4B"
|
| 90 |
+
model_name = model_stub.split("/")[-1]
|
| 91 |
+
|
| 92 |
+
num_samples = 1024
|
| 93 |
+
max_seq_len = 8192
|
| 94 |
+
|
| 95 |
+
model = AutoModelForCausalLM.from_pretrained(model_stub)
|
| 96 |
+
|
| 97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
| 98 |
+
|
| 99 |
+
def preprocess_fn(example):
|
| 100 |
+
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
|
| 101 |
+
|
| 102 |
+
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
|
| 103 |
+
ds = ds.map(preprocess_fn)
|
| 104 |
+
|
| 105 |
+
# Configure the quantization algorithm and scheme
|
| 106 |
+
recipe = GPTQModifier(
|
| 107 |
+
ignore=["lm_head"],
|
| 108 |
+
sequential_targets=["Qwen3DecoderLayer"],
|
| 109 |
+
targets="Linear",
|
| 110 |
+
dampening_frac=0.01,
|
| 111 |
+
scheme="W4A16",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Apply quantization
|
| 115 |
+
oneshot(
|
| 116 |
+
model=model,
|
| 117 |
+
dataset=ds,
|
| 118 |
+
recipe=recipe,
|
| 119 |
+
max_seq_length=max_seq_len,
|
| 120 |
+
num_calibration_samples=num_samples,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Save to disk in compressed-tensors format
|
| 124 |
+
save_path = model_name + "-quantized.w4a16"
|
| 125 |
+
model.save_pretrained(save_path)
|
| 126 |
+
tokenizer.save_pretrained(save_path)
|
| 127 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
| 128 |
+
```
|
| 129 |
+
</details>
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
## Evaluation
|
| 134 |
+
|
| 135 |
+
The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning).
|
| 136 |
+
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
|
| 137 |
+
|
| 138 |
+
<details>
|
| 139 |
+
<summary>Evaluation details</summary>
|
| 140 |
+
|
| 141 |
+
**lm-evaluation-harness**
|
| 142 |
+
```
|
| 143 |
+
lm_eval \
|
| 144 |
+
--model vllm \
|
| 145 |
+
--model_args pretrained="RedHatAI/Qwen3-4B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
| 146 |
+
--tasks openllm \
|
| 147 |
+
--apply_chat_template\
|
| 148 |
+
--fewshot_as_multiturn \
|
| 149 |
+
--batch_size auto
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
```
|
| 153 |
+
lm_eval \
|
| 154 |
+
--model vllm \
|
| 155 |
+
--model_args pretrained="RedHatAI/Qwen3-4B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
| 156 |
+
--tasks mgsm \
|
| 157 |
+
--apply_chat_template\
|
| 158 |
+
--batch_size auto
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
```
|
| 162 |
+
lm_eval \
|
| 163 |
+
--model vllm \
|
| 164 |
+
--model_args pretrained="RedHatAI/Qwen3-4B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
| 165 |
+
--tasks leaderboard \
|
| 166 |
+
--apply_chat_template\
|
| 167 |
+
--fewshot_as_multiturn \
|
| 168 |
+
--batch_size auto
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
**lighteval**
|
| 172 |
+
|
| 173 |
+
lighteval_model_arguments.yaml
|
| 174 |
+
```yaml
|
| 175 |
+
model_parameters:
|
| 176 |
+
model_name: RedHatAI/Qwen3-4B-quantized.w4a16
|
| 177 |
+
dtype: auto
|
| 178 |
+
gpu_memory_utilization: 0.9
|
| 179 |
+
max_model_length: 40960
|
| 180 |
+
generation_parameters:
|
| 181 |
+
temperature: 0.6
|
| 182 |
+
top_k: 20
|
| 183 |
+
min_p: 0.0
|
| 184 |
+
top_p: 0.95
|
| 185 |
+
max_new_tokens: 32768
|
| 186 |
+
```
|
| 187 |
+
|
| 188 |
+
```
|
| 189 |
+
lighteval vllm \
|
| 190 |
+
--model_args lighteval_model_arguments.yaml \
|
| 191 |
+
--tasks lighteval|aime24|0|0 \
|
| 192 |
+
--use_chat_template = true
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
```
|
| 196 |
+
lighteval vllm \
|
| 197 |
+
--model_args lighteval_model_arguments.yaml \
|
| 198 |
+
--tasks lighteval|aime25|0|0 \
|
| 199 |
+
--use_chat_template = true
|
| 200 |
+
```
|
| 201 |
+
|
| 202 |
+
```
|
| 203 |
+
lighteval vllm \
|
| 204 |
+
--model_args lighteval_model_arguments.yaml \
|
| 205 |
+
--tasks lighteval|math_500|0|0 \
|
| 206 |
+
--use_chat_template = true
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
+
```
|
| 210 |
+
lighteval vllm \
|
| 211 |
+
--model_args lighteval_model_arguments.yaml \
|
| 212 |
+
--tasks lighteval|gpqa:diamond|0|0 \
|
| 213 |
+
--use_chat_template = true
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
```
|
| 217 |
+
lighteval vllm \
|
| 218 |
+
--model_args lighteval_model_arguments.yaml \
|
| 219 |
+
--tasks extended|lcb:codegeneration \
|
| 220 |
+
--use_chat_template = true
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
</details>
|
| 224 |
+
|
| 225 |
+
### Accuracy
|
| 226 |
+
|
| 227 |
+
<table>
|
| 228 |
+
<tr>
|
| 229 |
+
<th>Category
|
| 230 |
+
</th>
|
| 231 |
+
<th>Benchmark
|
| 232 |
+
</th>
|
| 233 |
+
<th>Qwen3-4B
|
| 234 |
+
</th>
|
| 235 |
+
<th>Qwen3-4B-quantized.w4a16<br>(this model)
|
| 236 |
+
</th>
|
| 237 |
+
<th>Recovery
|
| 238 |
+
</th>
|
| 239 |
+
</tr>
|
| 240 |
+
<tr>
|
| 241 |
+
<td rowspan="7" ><strong>OpenLLM v1</strong>
|
| 242 |
+
</td>
|
| 243 |
+
<td>MMLU (5-shot)
|
| 244 |
+
</td>
|
| 245 |
+
<td>66.76
|
| 246 |
+
</td>
|
| 247 |
+
<td>65.01
|
| 248 |
+
</td>
|
| 249 |
+
<td>97.38%
|
| 250 |
+
</td>
|
| 251 |
+
</tr>
|
| 252 |
+
<tr>
|
| 253 |
+
<td>ARC Challenge (25-shot)
|
| 254 |
+
</td>
|
| 255 |
+
<td>50.17
|
| 256 |
+
</td>
|
| 257 |
+
<td>51.19
|
| 258 |
+
</td>
|
| 259 |
+
<td>102.0%
|
| 260 |
+
</td>
|
| 261 |
+
</tr>
|
| 262 |
+
<tr>
|
| 263 |
+
<td>GSM-8K (5-shot, strict-match)
|
| 264 |
+
</td>
|
| 265 |
+
<td>60.80
|
| 266 |
+
</td>
|
| 267 |
+
<td>61.18
|
| 268 |
+
</td>
|
| 269 |
+
<td>100.6%
|
| 270 |
+
</td>
|
| 271 |
+
</tr>
|
| 272 |
+
<tr>
|
| 273 |
+
<td>Hellaswag (10-shot)
|
| 274 |
+
</td>
|
| 275 |
+
<td>52.80
|
| 276 |
+
</td>
|
| 277 |
+
<td>53.01
|
| 278 |
+
</td>
|
| 279 |
+
<td>100.4%
|
| 280 |
+
</td>
|
| 281 |
+
</tr>
|
| 282 |
+
<tr>
|
| 283 |
+
<td>Winogrande (5-shot)
|
| 284 |
+
</td>
|
| 285 |
+
<td>58.41
|
| 286 |
+
</td>
|
| 287 |
+
<td>62.27
|
| 288 |
+
</td>
|
| 289 |
+
<td>106.6%
|
| 290 |
+
</td>
|
| 291 |
+
</tr>
|
| 292 |
+
<tr>
|
| 293 |
+
<td>TruthfulQA (0-shot, mc2)
|
| 294 |
+
</td>
|
| 295 |
+
<td>51.79
|
| 296 |
+
</td>
|
| 297 |
+
<td>53.09
|
| 298 |
+
</td>
|
| 299 |
+
<td>102.5%
|
| 300 |
+
</td>
|
| 301 |
+
</tr>
|
| 302 |
+
<tr>
|
| 303 |
+
<td><strong>Average</strong>
|
| 304 |
+
</td>
|
| 305 |
+
<td><strong>56.79</strong>
|
| 306 |
+
</td>
|
| 307 |
+
<td><strong>57.63</strong>
|
| 308 |
+
</td>
|
| 309 |
+
<td><strong>101.5%</strong>
|
| 310 |
+
</td>
|
| 311 |
+
</tr>
|
| 312 |
+
<tr>
|
| 313 |
+
<td rowspan="7" ><strong>OpenLLM v2</strong>
|
| 314 |
+
</td>
|
| 315 |
+
<td>MMLU-Pro (5-shot)
|
| 316 |
+
</td>
|
| 317 |
+
<td>29.82
|
| 318 |
+
</td>
|
| 319 |
+
<td>26.25
|
| 320 |
+
</td>
|
| 321 |
+
<td>88.0%
|
| 322 |
+
</td>
|
| 323 |
+
</tr>
|
| 324 |
+
<tr>
|
| 325 |
+
<td>IFEval (0-shot)
|
| 326 |
+
</td>
|
| 327 |
+
<td>82.90
|
| 328 |
+
</td>
|
| 329 |
+
<td>81.45
|
| 330 |
+
</td>
|
| 331 |
+
<td>99.2%
|
| 332 |
+
</td>
|
| 333 |
+
</tr>
|
| 334 |
+
<tr>
|
| 335 |
+
<td>BBH (3-shot)
|
| 336 |
+
</td>
|
| 337 |
+
<td>29.69
|
| 338 |
+
</td>
|
| 339 |
+
<td>25.11
|
| 340 |
+
</td>
|
| 341 |
+
<td>84.6%
|
| 342 |
+
</td>
|
| 343 |
+
</tr>
|
| 344 |
+
<tr>
|
| 345 |
+
<td>Math-lvl-5 (4-shot)
|
| 346 |
+
</td>
|
| 347 |
+
<td>50.63
|
| 348 |
+
</td>
|
| 349 |
+
<td>48.66
|
| 350 |
+
</td>
|
| 351 |
+
<td>96.1%
|
| 352 |
+
</td>
|
| 353 |
+
</tr>
|
| 354 |
+
<tr>
|
| 355 |
+
<td>GPQA (0-shot)
|
| 356 |
+
</td>
|
| 357 |
+
<td>0.00
|
| 358 |
+
</td>
|
| 359 |
+
<td>0.00
|
| 360 |
+
</td>
|
| 361 |
+
<td>---
|
| 362 |
+
</td>
|
| 363 |
+
</tr>
|
| 364 |
+
<tr>
|
| 365 |
+
<td>MuSR (0-shot)
|
| 366 |
+
</td>
|
| 367 |
+
<td>11.37
|
| 368 |
+
</td>
|
| 369 |
+
<td>13.92
|
| 370 |
+
</td>
|
| 371 |
+
<td>---
|
| 372 |
+
</td>
|
| 373 |
+
</tr>
|
| 374 |
+
<tr>
|
| 375 |
+
<td><strong>Average</strong>
|
| 376 |
+
</td>
|
| 377 |
+
<td><strong>33.93</strong>
|
| 378 |
+
</td>
|
| 379 |
+
<td><strong>32.57</strong>
|
| 380 |
+
</td>
|
| 381 |
+
<td><strong>96.0%</strong>
|
| 382 |
+
</td>
|
| 383 |
+
</tr>
|
| 384 |
+
<tr>
|
| 385 |
+
<td><strong>Multilingual</strong>
|
| 386 |
+
</td>
|
| 387 |
+
<td>MGSM (0-shot)
|
| 388 |
+
</td>
|
| 389 |
+
<td>26.67
|
| 390 |
+
</td>
|
| 391 |
+
<td>25.63
|
| 392 |
+
</td>
|
| 393 |
+
<td>96.1%
|
| 394 |
+
</td>
|
| 395 |
+
</tr>
|
| 396 |
+
<tr>
|
| 397 |
+
<td rowspan="6" ><strong>Reasoning<br>(generation)</strong>
|
| 398 |
+
</td>
|
| 399 |
+
<td>AIME 2024
|
| 400 |
+
</td>
|
| 401 |
+
<td>71.35
|
| 402 |
+
</td>
|
| 403 |
+
<td>63.85
|
| 404 |
+
</td>
|
| 405 |
+
<td>89.5%
|
| 406 |
+
</td>
|
| 407 |
+
</tr>
|
| 408 |
+
<tr>
|
| 409 |
+
<td>AIME 2025
|
| 410 |
+
</td>
|
| 411 |
+
<td>59.98
|
| 412 |
+
</td>
|
| 413 |
+
<td>57.71
|
| 414 |
+
</td>
|
| 415 |
+
<td>96.9%
|
| 416 |
+
</td>
|
| 417 |
+
</tr>
|
| 418 |
+
<tr>
|
| 419 |
+
<td>GPQA diamond
|
| 420 |
+
</td>
|
| 421 |
+
<td>55.56
|
| 422 |
+
</td>
|
| 423 |
+
<td>53.54
|
| 424 |
+
</td>
|
| 425 |
+
<td>96.4%
|
| 426 |
+
</td>
|
| 427 |
+
</tr>
|
| 428 |
+
<tr>
|
| 429 |
+
<td>Math-lvl-5
|
| 430 |
+
</td>
|
| 431 |
+
<td>95.60
|
| 432 |
+
</td>
|
| 433 |
+
<td>94.60
|
| 434 |
+
</td>
|
| 435 |
+
<td>99.0%
|
| 436 |
+
</td>
|
| 437 |
+
</tr>
|
| 438 |
+
<tr>
|
| 439 |
+
<td>LiveCodeBench
|
| 440 |
+
</td>
|
| 441 |
+
<td>53.03
|
| 442 |
+
</td>
|
| 443 |
+
<td>49.51
|
| 444 |
+
</td>
|
| 445 |
+
<td>93.4%
|
| 446 |
+
</td>
|
| 447 |
+
</tr>
|
| 448 |
+
</table>
|