File size: 7,451 Bytes
dc33161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b774557
dc33161
 
b774557
dc33161
 
b774557
dc33161
 
 
 
 
 
 
 
 
 
b774557
dc33161
 
 
 
b774557
dc33161
 
 
 
 
 
 
 
 
 
 
 
 
 
b774557
dc33161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f511a94
dc33161
f511a94
dc33161
 
f511a94
dc33161
f511a94
dc33161
f511a94
dc33161
b774557
dc33161
 
f511a94
 
 
 
dc33161
f511a94
 
 
dc33161
f511a94
dc33161
 
f511a94
 
 
 
 
 
 
 
dc33161
 
f511a94
 
 
dc33161
 
f511a94
 
dc33161
f511a94
 
dc33161
 
 
f511a94
dc33161
f511a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc33161
 
 
f511a94
 
 
 
 
 
dc33161
 
 
 
 
 
 
 
f511a94
 
dc33161
f511a94
 
 
 
 
 
 
 
 
dc33161
f511a94
 
 
dc33161
 
 
 
 
 
 
 
 
b774557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc33161
 
 
 
 
 
 
 
 
 
 
b774557
dc33161
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
---
tags:
- fp4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: apache-2.0
base_model: Qwen/Qwen3-VL-235B-A22B-Instruct
---

# Qwen3-VL-235B-A22B-Instruct-NVFP4

## Model Overview
- **Model Architecture:** Qwen/Qwen3-VL-235B-A22B-Instruct
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP4
  - **Activation quantization:** FP4
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 10/29/2025
- **Version:** 1.0
- **Model Developers:** RedHatAI

This model is a quantized version of [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.

### Model Optimizations

This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.

Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4"
number_gpus = 1

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.

<details>
  
```python
import torch
from datasets import load_dataset
from transformers import AutoProcessor, Qwen3VLMoeForConditionalGeneration

from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation

# NOTE: Requires a minimum of transformers 4.57.0

MODEL_ID = "Qwen/Qwen3-VL-235B-A22B-Instruct"


# Load model.
model = Qwen3VLMoeForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)

DATASET_ID = "neuralmagic/calibration"
NUM_CALIBRATION_SAMPLES = 20
MAX_SEQUENCE_LENGTH = 8192

ds = load_dataset(DATASET_ID, name="LLM", split=f"train[:{NUM_CALIBRATION_SAMPLES}]")


def preprocess_function(example):
    messgages = []
    for message in example["messages"]:
        messgages.append(
            {
                "role": message["role"],
                "content": [{"type": "text", "text": message["content"]}],
            }
        )

    return processor.apply_chat_template(
        messgages,
        return_tensors="pt",
        padding=False,
        truncation=True,
        max_length=MAX_SEQUENCE_LENGTH,
        tokenize=True,
        add_special_tokens=False,
        return_dict=True,
        add_generation_prompt=False,
    )


ds = ds.map(preprocess_function, batched=False, remove_columns=ds.column_names)


def data_collator(batch):
    assert len(batch) == 1
    return {
        key: (
            torch.tensor(value)
            if key != "pixel_values"
            else torch.tensor(value, dtype=torch.bfloat16).squeeze(0)
        )
        for key, value in batch[0].items()
    }


# Configure the quantization algorithm and scheme.
# In this case, we:
#   * quantize the weights to fp4 with group-wise quantization
#   * quantize the activations to fp4 with dynamic group activations
recipe = QuantizationModifier(
    targets="Linear",
    scheme="NVFP4",
    ignore=[
        "re:.*lm_head",
        "re:visual.*",
        "re:model.visual.*",
        "re:.*mlp.gate$",
    ],
)

# Apply quantization.
oneshot(
    model=model,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    dataset=ds,
    data_collator=data_collator,
)

print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(processor.decode(output[0]))
print("==========================================")


# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)

```
</details>

## Evaluation

This model was evaluated on the well-known OpenLLM v1, OpenLLM v2 and HumanEval_64 benchmarks using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). The Reasoning evals were done using [ligheval](https://github.com/neuralmagic/lighteval).

### Accuracy
<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Metric</th>
      <th>Qwen/Qwen3-VL-235B-A22B-Instruct</th>
      <th>RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4 (this model)</th>
      <th>Recovery</th>
    </tr>
  </thead>
  <tbody>
    <!-- OpenLLM -->
    <tr>
      <td rowspan="7"><b>OpenLLM</b></td>
      <td>arc_challenge</td>
      <td>72.95</td>
      <td>71.59</td>
      <td>98.13</td>
    </tr>
    <tr>
      <td>gsm8k</td>
      <td>90.37</td>
      <td>88.25</td>
      <td>97.65</td>
    </tr>
    <tr>
      <td>hellaswag</td>
      <td>87.94</td>
      <td>86.80</td>
      <td>98.70</td>
    </tr>
    <tr>
      <td>mmlu</td>
      <td>87.12</td>
      <td>86.22</td>
      <td>98.97</td>
    </tr>
    <tr>
      <td>truthfulqa_mc2</td>
      <td>63.31</td>
      <td>62.37</td>
      <td>98.52</td>
    </tr>
    <tr>
      <td>winogrande</td>
      <td>81.93</td>
      <td>80.43</td>
      <td>98.17</td>
    </tr>
    <tr>
      <td><b>Average</b></td>
      <td><b>80.60</b></td>
      <td><b>79.28</b></td>
      <td><b>98.35</b></td>
    </tr>
  </tbody>
</table>



### Reproduction

The results were obtained using the following commands:

<details>

```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks openllm \
  --batch_size auto
```

</details>