File size: 7,451 Bytes
dc33161 b774557 dc33161 b774557 dc33161 b774557 dc33161 b774557 dc33161 b774557 dc33161 b774557 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 b774557 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 f511a94 dc33161 b774557 dc33161 b774557 dc33161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
---
tags:
- fp4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: apache-2.0
base_model: Qwen/Qwen3-VL-235B-A22B-Instruct
---
# Qwen3-VL-235B-A22B-Instruct-NVFP4
## Model Overview
- **Model Architecture:** Qwen/Qwen3-VL-235B-A22B-Instruct
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP4
- **Activation quantization:** FP4
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 10/29/2025
- **Version:** 1.0
- **Model Developers:** RedHatAI
This model is a quantized version of [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.
<details>
```python
import torch
from datasets import load_dataset
from transformers import AutoProcessor, Qwen3VLMoeForConditionalGeneration
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
# NOTE: Requires a minimum of transformers 4.57.0
MODEL_ID = "Qwen/Qwen3-VL-235B-A22B-Instruct"
# Load model.
model = Qwen3VLMoeForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
DATASET_ID = "neuralmagic/calibration"
NUM_CALIBRATION_SAMPLES = 20
MAX_SEQUENCE_LENGTH = 8192
ds = load_dataset(DATASET_ID, name="LLM", split=f"train[:{NUM_CALIBRATION_SAMPLES}]")
def preprocess_function(example):
messgages = []
for message in example["messages"]:
messgages.append(
{
"role": message["role"],
"content": [{"type": "text", "text": message["content"]}],
}
)
return processor.apply_chat_template(
messgages,
return_tensors="pt",
padding=False,
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
tokenize=True,
add_special_tokens=False,
return_dict=True,
add_generation_prompt=False,
)
ds = ds.map(preprocess_function, batched=False, remove_columns=ds.column_names)
def data_collator(batch):
assert len(batch) == 1
return {
key: (
torch.tensor(value)
if key != "pixel_values"
else torch.tensor(value, dtype=torch.bfloat16).squeeze(0)
)
for key, value in batch[0].items()
}
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp4 with group-wise quantization
# * quantize the activations to fp4 with dynamic group activations
recipe = QuantizationModifier(
targets="Linear",
scheme="NVFP4",
ignore=[
"re:.*lm_head",
"re:visual.*",
"re:model.visual.*",
"re:.*mlp.gate$",
],
)
# Apply quantization.
oneshot(
model=model,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
dataset=ds,
data_collator=data_collator,
)
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(processor.decode(output[0]))
print("==========================================")
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
```
</details>
## Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2 and HumanEval_64 benchmarks using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). The Reasoning evals were done using [ligheval](https://github.com/neuralmagic/lighteval).
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>Qwen/Qwen3-VL-235B-A22B-Instruct</th>
<th>RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4 (this model)</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<!-- OpenLLM -->
<tr>
<td rowspan="7"><b>OpenLLM</b></td>
<td>arc_challenge</td>
<td>72.95</td>
<td>71.59</td>
<td>98.13</td>
</tr>
<tr>
<td>gsm8k</td>
<td>90.37</td>
<td>88.25</td>
<td>97.65</td>
</tr>
<tr>
<td>hellaswag</td>
<td>87.94</td>
<td>86.80</td>
<td>98.70</td>
</tr>
<tr>
<td>mmlu</td>
<td>87.12</td>
<td>86.22</td>
<td>98.97</td>
</tr>
<tr>
<td>truthfulqa_mc2</td>
<td>63.31</td>
<td>62.37</td>
<td>98.52</td>
</tr>
<tr>
<td>winogrande</td>
<td>81.93</td>
<td>80.43</td>
<td>98.17</td>
</tr>
<tr>
<td><b>Average</b></td>
<td><b>80.60</b></td>
<td><b>79.28</b></td>
<td><b>98.35</b></td>
</tr>
</tbody>
</table>
### Reproduction
The results were obtained using the following commands:
<details>
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks openllm \
--batch_size auto
```
</details> |