Update README.md
Browse files
README.md
CHANGED
|
@@ -101,7 +101,7 @@ MAX_SEQUENCE_LENGTH = 2048
|
|
| 101 |
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
| 102 |
ds = ds.shuffle(seed=42)
|
| 103 |
|
| 104 |
-
dampening_frac=0.
|
| 105 |
|
| 106 |
def data_collator(batch):
|
| 107 |
assert len(batch) == 1, "Only batch size of 1 is supported for calibration"
|
|
@@ -193,44 +193,63 @@ lm_eval \
|
|
| 193 |
<td rowspan="7"><b>OpenLLM V1</b></td>
|
| 194 |
<td>ARC Challenge</td>
|
| 195 |
<td>72.53%</td>
|
| 196 |
-
<td
|
| 197 |
-
<td
|
| 198 |
</tr>
|
| 199 |
<tr>
|
| 200 |
<td>GSM8K</td>
|
| 201 |
<td>92.12%</td>
|
| 202 |
-
<td
|
| 203 |
-
<td
|
| 204 |
</tr>
|
| 205 |
<tr>
|
| 206 |
<td>Hellaswag</td>
|
| 207 |
<td>85.78%</td>
|
| 208 |
-
<td
|
| 209 |
-
<td
|
| 210 |
</tr>
|
| 211 |
<tr>
|
| 212 |
<td>MMLU</td>
|
| 213 |
<td>77.53%</td>
|
| 214 |
-
<td
|
| 215 |
-
<td
|
| 216 |
</tr>
|
| 217 |
<tr>
|
| 218 |
<td>Truthfulqa (mc2)</td>
|
| 219 |
<td>62.20%</td>
|
| 220 |
-
<td
|
| 221 |
-
<td
|
| 222 |
</tr>
|
| 223 |
<tr>
|
| 224 |
<td>Winogrande</td>
|
| 225 |
<td>79.40%</td>
|
| 226 |
-
<td
|
| 227 |
-
<td
|
| 228 |
</tr>
|
| 229 |
<tr>
|
| 230 |
<td><b>Average Score</b></td>
|
| 231 |
<td><b>78.26%</b></td>
|
| 232 |
-
<td><b
|
| 233 |
-
<td><b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
</tr>
|
| 235 |
</tbody>
|
| 236 |
</table>
|
|
|
|
| 101 |
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
| 102 |
ds = ds.shuffle(seed=42)
|
| 103 |
|
| 104 |
+
dampening_frac=0.05
|
| 105 |
|
| 106 |
def data_collator(batch):
|
| 107 |
assert len(batch) == 1, "Only batch size of 1 is supported for calibration"
|
|
|
|
| 193 |
<td rowspan="7"><b>OpenLLM V1</b></td>
|
| 194 |
<td>ARC Challenge</td>
|
| 195 |
<td>72.53%</td>
|
| 196 |
+
<td>70.82%</td>
|
| 197 |
+
<td>97.65%</td>
|
| 198 |
</tr>
|
| 199 |
<tr>
|
| 200 |
<td>GSM8K</td>
|
| 201 |
<td>92.12%</td>
|
| 202 |
+
<td>85.75%</td>
|
| 203 |
+
<td>93.09%</td>
|
| 204 |
</tr>
|
| 205 |
<tr>
|
| 206 |
<td>Hellaswag</td>
|
| 207 |
<td>85.78%</td>
|
| 208 |
+
<td>85.05%</td>
|
| 209 |
+
<td>99.15%</td>
|
| 210 |
</tr>
|
| 211 |
<tr>
|
| 212 |
<td>MMLU</td>
|
| 213 |
<td>77.53%</td>
|
| 214 |
+
<td>76.37%</td>
|
| 215 |
+
<td>98.50%</td>
|
| 216 |
</tr>
|
| 217 |
<tr>
|
| 218 |
<td>Truthfulqa (mc2)</td>
|
| 219 |
<td>62.20%</td>
|
| 220 |
+
<td>61.73%</td>
|
| 221 |
+
<td>99.24%</td>
|
| 222 |
</tr>
|
| 223 |
<tr>
|
| 224 |
<td>Winogrande</td>
|
| 225 |
<td>79.40%</td>
|
| 226 |
+
<td>79.72%</td>
|
| 227 |
+
<td>100.40%</td>
|
| 228 |
</tr>
|
| 229 |
<tr>
|
| 230 |
<td><b>Average Score</b></td>
|
| 231 |
<td><b>78.26%</b></td>
|
| 232 |
+
<td><b>76.57%</b></td>
|
| 233 |
+
<td><b>97.84%</b></td>
|
| 234 |
+
</tr>
|
| 235 |
+
<tr>
|
| 236 |
+
<td rowspan="3"><b>Vision Evals</b></td>
|
| 237 |
+
<td>MMMU (val)</td>
|
| 238 |
+
<td>50.89%</td>
|
| 239 |
+
<td>51.78%</td>
|
| 240 |
+
<td>101.75%</td>
|
| 241 |
+
</tr>
|
| 242 |
+
<tr>
|
| 243 |
+
<td>ChartQA</td>
|
| 244 |
+
<td>72.16%</td>
|
| 245 |
+
<td>72.20%</td>
|
| 246 |
+
<td>100.06%</td>
|
| 247 |
+
</tr>
|
| 248 |
+
<tr>
|
| 249 |
+
<td><b>Average Score</b></td>
|
| 250 |
+
<td><b>61.53%</b></td>
|
| 251 |
+
<td><b>61.99%</b></td>
|
| 252 |
+
<td><b>100.90%</b></td>
|
| 253 |
</tr>
|
| 254 |
</tbody>
|
| 255 |
</table>
|