Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) SELM-Llama-3-8B-Instruct-iter-1 - GGUF - Model creator: https://huggingface.co/ZhangShenao/ - Original model: https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [SELM-Llama-3-8B-Instruct-iter-1.Q2_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q2_K.gguf) | Q2_K | 2.96GB | | [SELM-Llama-3-8B-Instruct-iter-1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [SELM-Llama-3-8B-Instruct-iter-1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.IQ3_S.gguf) | IQ3_S | 3.43GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [SELM-Llama-3-8B-Instruct-iter-1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.IQ3_M.gguf) | IQ3_M | 3.52GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q3_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q3_K.gguf) | Q3_K | 3.74GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [SELM-Llama-3-8B-Instruct-iter-1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q4_0.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q4_0.gguf) | Q4_0 | 4.34GB | | [SELM-Llama-3-8B-Instruct-iter-1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q4_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q4_K.gguf) | Q4_K | 4.58GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q4_1.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q4_1.gguf) | Q4_1 | 4.78GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q5_0.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q5_0.gguf) | Q5_0 | 5.21GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q5_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q5_K.gguf) | Q5_K | 5.34GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q5_1.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q5_1.gguf) | Q5_1 | 5.65GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q6_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q6_K.gguf) | Q6_K | 6.14GB | | [SELM-Llama-3-8B-Instruct-iter-1.Q8_0.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-1-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-1.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- license: mit base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment-handbook - dpo - trl - selm datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: SELM-Llama-3-8B-Instruct-iter-1 results: [] --- [Self-Exploring Language Models: Active Preference Elicitation for Online Alignment](https://arxiv.org/abs/2405.19332). # SELM-Llama-3-8B-Instruct-iter-1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description - Model type: A 8B parameter Llama3-instruct-based Self-Exploring Language Models (SELM). - License: MIT ## Results |                                        | AlpacaEval 2.0 (LC WR) | MT-Bench (Average) | |----------------------------------------|------------------------|--------------------| | [SELM-Llama-3-8B-Instruct-iter-3](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3) |                   33.47          |                8.29       | | [SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) |                   35.65         |                8.09      | | [SELM-Llama-3-8B-Instruct-iter-1](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1) |                   32.02         |                7.92       | | [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |                   24.31         |                7.93       | ### Training hyperparameters The following hyperparameters were used during training: - alpha: 0.0001 - beta: 0.01 - train_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 1 ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1