uploaded readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Quantization made by Richard Erkhov.
|
| 2 |
+
|
| 3 |
+
[Github](https://github.com/RichardErkhov)
|
| 4 |
+
|
| 5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
| 6 |
+
|
| 7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
InstructLM-1.3B - GGUF
|
| 11 |
+
- Model creator: https://huggingface.co/instruction-pretrain/
|
| 12 |
+
- Original model: https://huggingface.co/instruction-pretrain/InstructLM-1.3B/
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
| Name | Quant method | Size |
|
| 16 |
+
| ---- | ---- | ---- |
|
| 17 |
+
| [InstructLM-1.3B.Q2_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q2_K.gguf) | Q2_K | 0.49GB |
|
| 18 |
+
| [InstructLM-1.3B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.IQ3_XS.gguf) | IQ3_XS | 0.54GB |
|
| 19 |
+
| [InstructLM-1.3B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.IQ3_S.gguf) | IQ3_S | 0.57GB |
|
| 20 |
+
| [InstructLM-1.3B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q3_K_S.gguf) | Q3_K_S | 0.56GB |
|
| 21 |
+
| [InstructLM-1.3B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.IQ3_M.gguf) | IQ3_M | 0.58GB |
|
| 22 |
+
| [InstructLM-1.3B.Q3_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q3_K.gguf) | Q3_K | 0.62GB |
|
| 23 |
+
| [InstructLM-1.3B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q3_K_M.gguf) | Q3_K_M | 0.62GB |
|
| 24 |
+
| [InstructLM-1.3B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q3_K_L.gguf) | Q3_K_L | 0.67GB |
|
| 25 |
+
| [InstructLM-1.3B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.IQ4_XS.gguf) | IQ4_XS | 0.69GB |
|
| 26 |
+
| [InstructLM-1.3B.Q4_0.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q4_0.gguf) | Q4_0 | 0.72GB |
|
| 27 |
+
| [InstructLM-1.3B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.IQ4_NL.gguf) | IQ4_NL | 0.73GB |
|
| 28 |
+
| [InstructLM-1.3B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q4_K_S.gguf) | Q4_K_S | 0.73GB |
|
| 29 |
+
| [InstructLM-1.3B.Q4_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q4_K.gguf) | Q4_K | 0.77GB |
|
| 30 |
+
| [InstructLM-1.3B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q4_K_M.gguf) | Q4_K_M | 0.77GB |
|
| 31 |
+
| [InstructLM-1.3B.Q4_1.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q4_1.gguf) | Q4_1 | 0.8GB |
|
| 32 |
+
| [InstructLM-1.3B.Q5_0.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q5_0.gguf) | Q5_0 | 0.87GB |
|
| 33 |
+
| [InstructLM-1.3B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q5_K_S.gguf) | Q5_K_S | 0.87GB |
|
| 34 |
+
| [InstructLM-1.3B.Q5_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q5_K.gguf) | Q5_K | 0.89GB |
|
| 35 |
+
| [InstructLM-1.3B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q5_K_M.gguf) | Q5_K_M | 0.89GB |
|
| 36 |
+
| [InstructLM-1.3B.Q5_1.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q5_1.gguf) | Q5_1 | 0.95GB |
|
| 37 |
+
| [InstructLM-1.3B.Q6_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q6_K.gguf) | Q6_K | 1.03GB |
|
| 38 |
+
| [InstructLM-1.3B.Q8_0.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_InstructLM-1.3B-gguf/blob/main/InstructLM-1.3B.Q8_0.gguf) | Q8_0 | 1.33GB |
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
Original model description:
|
| 44 |
+
---
|
| 45 |
+
license: apache-2.0
|
| 46 |
+
datasets:
|
| 47 |
+
- tiiuae/falcon-refinedweb
|
| 48 |
+
- instruction-pretrain/ft-instruction-synthesizer-collection
|
| 49 |
+
language:
|
| 50 |
+
- en
|
| 51 |
+
---
|
| 52 |
+
# Instruction Pre-Training: Language Models are Supervised Multitask Learners
|
| 53 |
+
This repo contains the **general models pre-trained from scratch** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co/papers/2406.14491).
|
| 54 |
+
|
| 55 |
+
We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training. **In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning.** In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.
|
| 56 |
+
|
| 57 |
+
<p align='center'>
|
| 58 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
|
| 59 |
+
</p>
|
| 60 |
+
|
| 61 |
+
## Resources
|
| 62 |
+
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
|
| 63 |
+
|
| 64 |
+
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
|
| 65 |
+
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
|
| 66 |
+
- General Models Pre-Trained from Scratch:
|
| 67 |
+
- [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
|
| 68 |
+
- [InstructLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLM-1.3B)
|
| 69 |
+
- Domain-Specific Models Pre-Trained from Llama3-8B:
|
| 70 |
+
- [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
|
| 71 |
+
- [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)
|
| 72 |
+
- General Instruction-Augmented Corpora: [general-instruction-augmented-corpora](https://huggingface.co/datasets/instruction-pretrain/general-instruction-augmented-corpora)
|
| 73 |
+
- Domain-Specific Instruction-Augmented Corpora (no finance data to avoid ethical issues): [medicine-instruction-augmented-corpora](https://huggingface.co/datasets/instruction-pretrain/medicine-instruction-augmented-corpora)
|
| 74 |
+
|
| 75 |
+
## General Pre-Training From Scratch
|
| 76 |
+
We augment the [RefinedWeb corproa](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer) to pre-train general langauge models from scratch.
|
| 77 |
+
|
| 78 |
+
To evaluate our general base model using the [lm-evaluation-harness framework](https://github.com/EleutherAI/lm-evaluation-harness)
|
| 79 |
+
|
| 80 |
+
1. Setup dependencies:
|
| 81 |
+
```bash
|
| 82 |
+
git clone https://github.com/EleutherAI/lm-evaluation-harness
|
| 83 |
+
cd lm-evaluation-harness
|
| 84 |
+
pip install -e .
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
2. Evalaute:
|
| 88 |
+
```bash
|
| 89 |
+
MODEL=instruction-pretrain/InstructLM-1.3B
|
| 90 |
+
add_bos_token=True # this flag is needed because lm-eval-harness set add_bos_token to False by default, but ours require add_bos_token to be True
|
| 91 |
+
|
| 92 |
+
accelerate launch -m lm_eval --model hf \
|
| 93 |
+
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
|
| 94 |
+
--gen_kwargs do_sample=False \
|
| 95 |
+
--tasks piqa,hellaswag,winogrande \
|
| 96 |
+
--batch_size auto \
|
| 97 |
+
--num_fewshot 0
|
| 98 |
+
|
| 99 |
+
accelerate launch -m lm_eval --model hf \
|
| 100 |
+
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
|
| 101 |
+
--gen_kwargs do_sample=False \
|
| 102 |
+
--tasks social_iqa,ai2_arc,openbookqa,boolq,mmlu \
|
| 103 |
+
--batch_size auto \
|
| 104 |
+
--num_fewshot 5
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
## Citation
|
| 108 |
+
If you find our work helpful, please cite us:
|
| 109 |
+
|
| 110 |
+
Instruction Pre-Training
|
| 111 |
+
```bibtex
|
| 112 |
+
@article{cheng2024instruction,
|
| 113 |
+
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
|
| 114 |
+
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
|
| 115 |
+
journal={arXiv preprint arXiv:2406.14491},
|
| 116 |
+
year={2024}
|
| 117 |
+
}
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
[AdaptLLM](https://huggingface.co/papers/2309.09530)
|
| 121 |
+
```bibtex
|
| 122 |
+
@inproceedings{
|
| 123 |
+
cheng2024adapting,
|
| 124 |
+
title={Adapting Large Language Models via Reading Comprehension},
|
| 125 |
+
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
|
| 126 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
| 127 |
+
year={2024},
|
| 128 |
+
url={https://openreview.net/forum?id=y886UXPEZ0}
|
| 129 |
+
}
|
| 130 |
+
```
|
| 131 |
+
|