root
commited on
Commit
·
f7400ff
1
Parent(s):
ad4369b
added NER
Browse files- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +813 -0
- weights.txt +0 -0
dev.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
final-model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:275ec01b9b537e09b63e7772738dc771b0547883a2bcda0424d4098cf7eb8720
|
| 3 |
+
size 2256883501
|
loss.tsv
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
| 2 |
+
1 00:30:30 4 0.0000 0.7202729176824617 0.20562097430229187 0.05 0.0014 0.0027 0.0014
|
| 3 |
+
2 00:32:15 4 0.0000 0.3212406154600784 0.15934991836547852 0.1765 0.0042 0.0082 0.0041
|
| 4 |
+
3 00:34:01 4 0.0000 0.2923256346762247 0.14386053383350372 0.2154 0.0393 0.0664 0.0344
|
| 5 |
+
4 00:35:45 4 0.0000 0.2778034171537818 0.13249367475509644 0.2737 0.0687 0.1099 0.0582
|
| 6 |
+
5 00:37:30 4 0.0000 0.26510193813684124 0.1335981786251068 0.2814 0.1038 0.1516 0.0824
|
| 7 |
+
6 00:39:15 4 0.0000 0.25729809377259627 0.12874221801757812 0.3404 0.1571 0.215 0.121
|
| 8 |
+
7 00:40:59 4 0.0000 0.25640539444537386 0.12849482893943787 0.372 0.1935 0.2546 0.1462
|
| 9 |
+
8 00:42:45 4 0.0000 0.2515904317709163 0.13098381459712982 0.3446 0.2006 0.2535 0.1453
|
| 10 |
+
9 00:44:30 4 0.0000 0.25032100312074507 0.1269032210111618 0.3832 0.1795 0.2445 0.1397
|
| 11 |
+
10 00:46:15 4 0.0000 0.24774755008128432 0.12706945836544037 0.3887 0.1837 0.2495 0.143
|
test.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training.log
ADDED
|
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2022-04-25 00:28:46,333 ----------------------------------------------------------------------------------------------------
|
| 2 |
+
2022-04-25 00:28:46,337 Model: "SequenceTagger(
|
| 3 |
+
(embeddings): TransformerWordEmbeddings(
|
| 4 |
+
(model): XLMRobertaModel(
|
| 5 |
+
(embeddings): RobertaEmbeddings(
|
| 6 |
+
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
|
| 7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
| 8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
| 9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 11 |
+
)
|
| 12 |
+
(encoder): RobertaEncoder(
|
| 13 |
+
(layer): ModuleList(
|
| 14 |
+
(0): RobertaLayer(
|
| 15 |
+
(attention): RobertaAttention(
|
| 16 |
+
(self): RobertaSelfAttention(
|
| 17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 21 |
+
)
|
| 22 |
+
(output): RobertaSelfOutput(
|
| 23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 26 |
+
)
|
| 27 |
+
)
|
| 28 |
+
(intermediate): RobertaIntermediate(
|
| 29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 30 |
+
(intermediate_act_fn): GELUActivation()
|
| 31 |
+
)
|
| 32 |
+
(output): RobertaOutput(
|
| 33 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 34 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 36 |
+
)
|
| 37 |
+
)
|
| 38 |
+
(1): RobertaLayer(
|
| 39 |
+
(attention): RobertaAttention(
|
| 40 |
+
(self): RobertaSelfAttention(
|
| 41 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 42 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 43 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 45 |
+
)
|
| 46 |
+
(output): RobertaSelfOutput(
|
| 47 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 48 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 50 |
+
)
|
| 51 |
+
)
|
| 52 |
+
(intermediate): RobertaIntermediate(
|
| 53 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 54 |
+
(intermediate_act_fn): GELUActivation()
|
| 55 |
+
)
|
| 56 |
+
(output): RobertaOutput(
|
| 57 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 58 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 60 |
+
)
|
| 61 |
+
)
|
| 62 |
+
(2): RobertaLayer(
|
| 63 |
+
(attention): RobertaAttention(
|
| 64 |
+
(self): RobertaSelfAttention(
|
| 65 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 66 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 67 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 69 |
+
)
|
| 70 |
+
(output): RobertaSelfOutput(
|
| 71 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 72 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 74 |
+
)
|
| 75 |
+
)
|
| 76 |
+
(intermediate): RobertaIntermediate(
|
| 77 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 78 |
+
(intermediate_act_fn): GELUActivation()
|
| 79 |
+
)
|
| 80 |
+
(output): RobertaOutput(
|
| 81 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 82 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 84 |
+
)
|
| 85 |
+
)
|
| 86 |
+
(3): RobertaLayer(
|
| 87 |
+
(attention): RobertaAttention(
|
| 88 |
+
(self): RobertaSelfAttention(
|
| 89 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 90 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 91 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 93 |
+
)
|
| 94 |
+
(output): RobertaSelfOutput(
|
| 95 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 96 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 98 |
+
)
|
| 99 |
+
)
|
| 100 |
+
(intermediate): RobertaIntermediate(
|
| 101 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 102 |
+
(intermediate_act_fn): GELUActivation()
|
| 103 |
+
)
|
| 104 |
+
(output): RobertaOutput(
|
| 105 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 106 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 108 |
+
)
|
| 109 |
+
)
|
| 110 |
+
(4): RobertaLayer(
|
| 111 |
+
(attention): RobertaAttention(
|
| 112 |
+
(self): RobertaSelfAttention(
|
| 113 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 114 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 115 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 117 |
+
)
|
| 118 |
+
(output): RobertaSelfOutput(
|
| 119 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 120 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 122 |
+
)
|
| 123 |
+
)
|
| 124 |
+
(intermediate): RobertaIntermediate(
|
| 125 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 126 |
+
(intermediate_act_fn): GELUActivation()
|
| 127 |
+
)
|
| 128 |
+
(output): RobertaOutput(
|
| 129 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 130 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 132 |
+
)
|
| 133 |
+
)
|
| 134 |
+
(5): RobertaLayer(
|
| 135 |
+
(attention): RobertaAttention(
|
| 136 |
+
(self): RobertaSelfAttention(
|
| 137 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 138 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 139 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 141 |
+
)
|
| 142 |
+
(output): RobertaSelfOutput(
|
| 143 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 144 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 146 |
+
)
|
| 147 |
+
)
|
| 148 |
+
(intermediate): RobertaIntermediate(
|
| 149 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 150 |
+
(intermediate_act_fn): GELUActivation()
|
| 151 |
+
)
|
| 152 |
+
(output): RobertaOutput(
|
| 153 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 154 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 156 |
+
)
|
| 157 |
+
)
|
| 158 |
+
(6): RobertaLayer(
|
| 159 |
+
(attention): RobertaAttention(
|
| 160 |
+
(self): RobertaSelfAttention(
|
| 161 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 162 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 163 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 165 |
+
)
|
| 166 |
+
(output): RobertaSelfOutput(
|
| 167 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 168 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 170 |
+
)
|
| 171 |
+
)
|
| 172 |
+
(intermediate): RobertaIntermediate(
|
| 173 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 174 |
+
(intermediate_act_fn): GELUActivation()
|
| 175 |
+
)
|
| 176 |
+
(output): RobertaOutput(
|
| 177 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 178 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
(7): RobertaLayer(
|
| 183 |
+
(attention): RobertaAttention(
|
| 184 |
+
(self): RobertaSelfAttention(
|
| 185 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 186 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 187 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 189 |
+
)
|
| 190 |
+
(output): RobertaSelfOutput(
|
| 191 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 192 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 194 |
+
)
|
| 195 |
+
)
|
| 196 |
+
(intermediate): RobertaIntermediate(
|
| 197 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 198 |
+
(intermediate_act_fn): GELUActivation()
|
| 199 |
+
)
|
| 200 |
+
(output): RobertaOutput(
|
| 201 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 202 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 204 |
+
)
|
| 205 |
+
)
|
| 206 |
+
(8): RobertaLayer(
|
| 207 |
+
(attention): RobertaAttention(
|
| 208 |
+
(self): RobertaSelfAttention(
|
| 209 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 210 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 211 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 213 |
+
)
|
| 214 |
+
(output): RobertaSelfOutput(
|
| 215 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 216 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 218 |
+
)
|
| 219 |
+
)
|
| 220 |
+
(intermediate): RobertaIntermediate(
|
| 221 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 222 |
+
(intermediate_act_fn): GELUActivation()
|
| 223 |
+
)
|
| 224 |
+
(output): RobertaOutput(
|
| 225 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 226 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 228 |
+
)
|
| 229 |
+
)
|
| 230 |
+
(9): RobertaLayer(
|
| 231 |
+
(attention): RobertaAttention(
|
| 232 |
+
(self): RobertaSelfAttention(
|
| 233 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 234 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 235 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 237 |
+
)
|
| 238 |
+
(output): RobertaSelfOutput(
|
| 239 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 240 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 242 |
+
)
|
| 243 |
+
)
|
| 244 |
+
(intermediate): RobertaIntermediate(
|
| 245 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 246 |
+
(intermediate_act_fn): GELUActivation()
|
| 247 |
+
)
|
| 248 |
+
(output): RobertaOutput(
|
| 249 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 250 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 252 |
+
)
|
| 253 |
+
)
|
| 254 |
+
(10): RobertaLayer(
|
| 255 |
+
(attention): RobertaAttention(
|
| 256 |
+
(self): RobertaSelfAttention(
|
| 257 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 258 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 259 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 261 |
+
)
|
| 262 |
+
(output): RobertaSelfOutput(
|
| 263 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 264 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 266 |
+
)
|
| 267 |
+
)
|
| 268 |
+
(intermediate): RobertaIntermediate(
|
| 269 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 270 |
+
(intermediate_act_fn): GELUActivation()
|
| 271 |
+
)
|
| 272 |
+
(output): RobertaOutput(
|
| 273 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 274 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 276 |
+
)
|
| 277 |
+
)
|
| 278 |
+
(11): RobertaLayer(
|
| 279 |
+
(attention): RobertaAttention(
|
| 280 |
+
(self): RobertaSelfAttention(
|
| 281 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 282 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 283 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 285 |
+
)
|
| 286 |
+
(output): RobertaSelfOutput(
|
| 287 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 288 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 290 |
+
)
|
| 291 |
+
)
|
| 292 |
+
(intermediate): RobertaIntermediate(
|
| 293 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 294 |
+
(intermediate_act_fn): GELUActivation()
|
| 295 |
+
)
|
| 296 |
+
(output): RobertaOutput(
|
| 297 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 298 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 300 |
+
)
|
| 301 |
+
)
|
| 302 |
+
(12): RobertaLayer(
|
| 303 |
+
(attention): RobertaAttention(
|
| 304 |
+
(self): RobertaSelfAttention(
|
| 305 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 306 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 307 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 308 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 309 |
+
)
|
| 310 |
+
(output): RobertaSelfOutput(
|
| 311 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 312 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 313 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 314 |
+
)
|
| 315 |
+
)
|
| 316 |
+
(intermediate): RobertaIntermediate(
|
| 317 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 318 |
+
(intermediate_act_fn): GELUActivation()
|
| 319 |
+
)
|
| 320 |
+
(output): RobertaOutput(
|
| 321 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 322 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 323 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 324 |
+
)
|
| 325 |
+
)
|
| 326 |
+
(13): RobertaLayer(
|
| 327 |
+
(attention): RobertaAttention(
|
| 328 |
+
(self): RobertaSelfAttention(
|
| 329 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 330 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 331 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 332 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 333 |
+
)
|
| 334 |
+
(output): RobertaSelfOutput(
|
| 335 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 336 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 337 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 338 |
+
)
|
| 339 |
+
)
|
| 340 |
+
(intermediate): RobertaIntermediate(
|
| 341 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 342 |
+
(intermediate_act_fn): GELUActivation()
|
| 343 |
+
)
|
| 344 |
+
(output): RobertaOutput(
|
| 345 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 346 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 348 |
+
)
|
| 349 |
+
)
|
| 350 |
+
(14): RobertaLayer(
|
| 351 |
+
(attention): RobertaAttention(
|
| 352 |
+
(self): RobertaSelfAttention(
|
| 353 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 354 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 355 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 357 |
+
)
|
| 358 |
+
(output): RobertaSelfOutput(
|
| 359 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 360 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 361 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 362 |
+
)
|
| 363 |
+
)
|
| 364 |
+
(intermediate): RobertaIntermediate(
|
| 365 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 366 |
+
(intermediate_act_fn): GELUActivation()
|
| 367 |
+
)
|
| 368 |
+
(output): RobertaOutput(
|
| 369 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 370 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 371 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 372 |
+
)
|
| 373 |
+
)
|
| 374 |
+
(15): RobertaLayer(
|
| 375 |
+
(attention): RobertaAttention(
|
| 376 |
+
(self): RobertaSelfAttention(
|
| 377 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 378 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 379 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 380 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 381 |
+
)
|
| 382 |
+
(output): RobertaSelfOutput(
|
| 383 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 384 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 385 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 386 |
+
)
|
| 387 |
+
)
|
| 388 |
+
(intermediate): RobertaIntermediate(
|
| 389 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 390 |
+
(intermediate_act_fn): GELUActivation()
|
| 391 |
+
)
|
| 392 |
+
(output): RobertaOutput(
|
| 393 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 394 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 395 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 396 |
+
)
|
| 397 |
+
)
|
| 398 |
+
(16): RobertaLayer(
|
| 399 |
+
(attention): RobertaAttention(
|
| 400 |
+
(self): RobertaSelfAttention(
|
| 401 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 402 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 403 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 404 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 405 |
+
)
|
| 406 |
+
(output): RobertaSelfOutput(
|
| 407 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 408 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 409 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 410 |
+
)
|
| 411 |
+
)
|
| 412 |
+
(intermediate): RobertaIntermediate(
|
| 413 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 414 |
+
(intermediate_act_fn): GELUActivation()
|
| 415 |
+
)
|
| 416 |
+
(output): RobertaOutput(
|
| 417 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 418 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 419 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 420 |
+
)
|
| 421 |
+
)
|
| 422 |
+
(17): RobertaLayer(
|
| 423 |
+
(attention): RobertaAttention(
|
| 424 |
+
(self): RobertaSelfAttention(
|
| 425 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 426 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 427 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 428 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 429 |
+
)
|
| 430 |
+
(output): RobertaSelfOutput(
|
| 431 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 432 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 433 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 434 |
+
)
|
| 435 |
+
)
|
| 436 |
+
(intermediate): RobertaIntermediate(
|
| 437 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 438 |
+
(intermediate_act_fn): GELUActivation()
|
| 439 |
+
)
|
| 440 |
+
(output): RobertaOutput(
|
| 441 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 442 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 443 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 444 |
+
)
|
| 445 |
+
)
|
| 446 |
+
(18): RobertaLayer(
|
| 447 |
+
(attention): RobertaAttention(
|
| 448 |
+
(self): RobertaSelfAttention(
|
| 449 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 450 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 451 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 452 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 453 |
+
)
|
| 454 |
+
(output): RobertaSelfOutput(
|
| 455 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 456 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 457 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 458 |
+
)
|
| 459 |
+
)
|
| 460 |
+
(intermediate): RobertaIntermediate(
|
| 461 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 462 |
+
(intermediate_act_fn): GELUActivation()
|
| 463 |
+
)
|
| 464 |
+
(output): RobertaOutput(
|
| 465 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 466 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 467 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 468 |
+
)
|
| 469 |
+
)
|
| 470 |
+
(19): RobertaLayer(
|
| 471 |
+
(attention): RobertaAttention(
|
| 472 |
+
(self): RobertaSelfAttention(
|
| 473 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 474 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 475 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 476 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 477 |
+
)
|
| 478 |
+
(output): RobertaSelfOutput(
|
| 479 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 480 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 481 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 482 |
+
)
|
| 483 |
+
)
|
| 484 |
+
(intermediate): RobertaIntermediate(
|
| 485 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 486 |
+
(intermediate_act_fn): GELUActivation()
|
| 487 |
+
)
|
| 488 |
+
(output): RobertaOutput(
|
| 489 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 490 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 491 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 492 |
+
)
|
| 493 |
+
)
|
| 494 |
+
(20): RobertaLayer(
|
| 495 |
+
(attention): RobertaAttention(
|
| 496 |
+
(self): RobertaSelfAttention(
|
| 497 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 498 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 499 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 500 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 501 |
+
)
|
| 502 |
+
(output): RobertaSelfOutput(
|
| 503 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 504 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 505 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 506 |
+
)
|
| 507 |
+
)
|
| 508 |
+
(intermediate): RobertaIntermediate(
|
| 509 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 510 |
+
(intermediate_act_fn): GELUActivation()
|
| 511 |
+
)
|
| 512 |
+
(output): RobertaOutput(
|
| 513 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 514 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 515 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 516 |
+
)
|
| 517 |
+
)
|
| 518 |
+
(21): RobertaLayer(
|
| 519 |
+
(attention): RobertaAttention(
|
| 520 |
+
(self): RobertaSelfAttention(
|
| 521 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 522 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 523 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 524 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 525 |
+
)
|
| 526 |
+
(output): RobertaSelfOutput(
|
| 527 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 528 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 529 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 530 |
+
)
|
| 531 |
+
)
|
| 532 |
+
(intermediate): RobertaIntermediate(
|
| 533 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 534 |
+
(intermediate_act_fn): GELUActivation()
|
| 535 |
+
)
|
| 536 |
+
(output): RobertaOutput(
|
| 537 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 538 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 539 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 540 |
+
)
|
| 541 |
+
)
|
| 542 |
+
(22): RobertaLayer(
|
| 543 |
+
(attention): RobertaAttention(
|
| 544 |
+
(self): RobertaSelfAttention(
|
| 545 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 546 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 547 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 548 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 549 |
+
)
|
| 550 |
+
(output): RobertaSelfOutput(
|
| 551 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 552 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 553 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 554 |
+
)
|
| 555 |
+
)
|
| 556 |
+
(intermediate): RobertaIntermediate(
|
| 557 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 558 |
+
(intermediate_act_fn): GELUActivation()
|
| 559 |
+
)
|
| 560 |
+
(output): RobertaOutput(
|
| 561 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 562 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 563 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 564 |
+
)
|
| 565 |
+
)
|
| 566 |
+
(23): RobertaLayer(
|
| 567 |
+
(attention): RobertaAttention(
|
| 568 |
+
(self): RobertaSelfAttention(
|
| 569 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 570 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 571 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 572 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 573 |
+
)
|
| 574 |
+
(output): RobertaSelfOutput(
|
| 575 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 576 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 577 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 578 |
+
)
|
| 579 |
+
)
|
| 580 |
+
(intermediate): RobertaIntermediate(
|
| 581 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 582 |
+
(intermediate_act_fn): GELUActivation()
|
| 583 |
+
)
|
| 584 |
+
(output): RobertaOutput(
|
| 585 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 586 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 587 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 588 |
+
)
|
| 589 |
+
)
|
| 590 |
+
)
|
| 591 |
+
)
|
| 592 |
+
(pooler): RobertaPooler(
|
| 593 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 594 |
+
(activation): Tanh()
|
| 595 |
+
)
|
| 596 |
+
)
|
| 597 |
+
)
|
| 598 |
+
(word_dropout): WordDropout(p=0.05)
|
| 599 |
+
(locked_dropout): LockedDropout(p=0.5)
|
| 600 |
+
(linear): Linear(in_features=1024, out_features=20, bias=True)
|
| 601 |
+
(loss_function): CrossEntropyLoss()
|
| 602 |
+
)"
|
| 603 |
+
2022-04-25 00:28:46,337 ----------------------------------------------------------------------------------------------------
|
| 604 |
+
2022-04-25 00:28:46,338 Corpus: "Corpus: 352 train + 50 dev + 67 test sentences"
|
| 605 |
+
2022-04-25 00:28:46,338 ----------------------------------------------------------------------------------------------------
|
| 606 |
+
2022-04-25 00:28:46,339 Parameters:
|
| 607 |
+
2022-04-25 00:28:46,339 - learning_rate: "0.000005"
|
| 608 |
+
2022-04-25 00:28:46,340 - mini_batch_size: "4"
|
| 609 |
+
2022-04-25 00:28:46,340 - patience: "3"
|
| 610 |
+
2022-04-25 00:28:46,340 - anneal_factor: "0.5"
|
| 611 |
+
2022-04-25 00:28:46,341 - max_epochs: "10"
|
| 612 |
+
2022-04-25 00:28:46,341 - shuffle: "True"
|
| 613 |
+
2022-04-25 00:28:46,342 - train_with_dev: "False"
|
| 614 |
+
2022-04-25 00:28:46,342 - batch_growth_annealing: "False"
|
| 615 |
+
2022-04-25 00:28:46,343 ----------------------------------------------------------------------------------------------------
|
| 616 |
+
2022-04-25 00:28:46,343 Model training base path: "resources/taggers/ner_xlm_finedtuned_ck1"
|
| 617 |
+
2022-04-25 00:28:46,344 ----------------------------------------------------------------------------------------------------
|
| 618 |
+
2022-04-25 00:28:46,345 Device: cuda:0
|
| 619 |
+
2022-04-25 00:28:46,345 ----------------------------------------------------------------------------------------------------
|
| 620 |
+
2022-04-25 00:28:46,346 Embeddings storage mode: none
|
| 621 |
+
2022-04-25 00:28:46,346 ----------------------------------------------------------------------------------------------------
|
| 622 |
+
2022-04-25 00:28:55,605 epoch 1 - iter 8/88 - loss 1.25822871 - samples/sec: 3.46 - lr: 0.000000
|
| 623 |
+
2022-04-25 00:29:03,857 epoch 1 - iter 16/88 - loss 1.22365524 - samples/sec: 3.88 - lr: 0.000001
|
| 624 |
+
2022-04-25 00:29:13,839 epoch 1 - iter 24/88 - loss 1.18822646 - samples/sec: 3.21 - lr: 0.000001
|
| 625 |
+
2022-04-25 00:29:23,244 epoch 1 - iter 32/88 - loss 1.12798044 - samples/sec: 3.40 - lr: 0.000002
|
| 626 |
+
2022-04-25 00:29:31,472 epoch 1 - iter 40/88 - loss 1.05740151 - samples/sec: 3.89 - lr: 0.000002
|
| 627 |
+
2022-04-25 00:29:38,751 epoch 1 - iter 48/88 - loss 0.99049744 - samples/sec: 4.40 - lr: 0.000003
|
| 628 |
+
2022-04-25 00:29:46,982 epoch 1 - iter 56/88 - loss 0.92466364 - samples/sec: 3.89 - lr: 0.000003
|
| 629 |
+
2022-04-25 00:29:54,849 epoch 1 - iter 64/88 - loss 0.87012404 - samples/sec: 4.07 - lr: 0.000004
|
| 630 |
+
2022-04-25 00:30:04,123 epoch 1 - iter 72/88 - loss 0.80738819 - samples/sec: 3.45 - lr: 0.000004
|
| 631 |
+
2022-04-25 00:30:13,985 epoch 1 - iter 80/88 - loss 0.76049921 - samples/sec: 3.25 - lr: 0.000005
|
| 632 |
+
2022-04-25 00:30:23,710 epoch 1 - iter 88/88 - loss 0.72027292 - samples/sec: 3.29 - lr: 0.000005
|
| 633 |
+
2022-04-25 00:30:23,712 ----------------------------------------------------------------------------------------------------
|
| 634 |
+
2022-04-25 00:30:23,713 EPOCH 1 done: loss 0.7203 - lr 0.000005
|
| 635 |
+
2022-04-25 00:30:30,732 Evaluating as a multi-label problem: False
|
| 636 |
+
2022-04-25 00:30:30,742 DEV : loss 0.20562097430229187 - f1-score (micro avg) 0.0027
|
| 637 |
+
2022-04-25 00:30:30,751 BAD EPOCHS (no improvement): 4
|
| 638 |
+
2022-04-25 00:30:30,753 ----------------------------------------------------------------------------------------------------
|
| 639 |
+
2022-04-25 00:30:39,284 epoch 2 - iter 8/88 - loss 0.32586993 - samples/sec: 3.75 - lr: 0.000005
|
| 640 |
+
2022-04-25 00:30:47,933 epoch 2 - iter 16/88 - loss 0.33892041 - samples/sec: 3.70 - lr: 0.000005
|
| 641 |
+
2022-04-25 00:30:56,990 epoch 2 - iter 24/88 - loss 0.33672071 - samples/sec: 3.53 - lr: 0.000005
|
| 642 |
+
2022-04-25 00:31:05,736 epoch 2 - iter 32/88 - loss 0.33060665 - samples/sec: 3.66 - lr: 0.000005
|
| 643 |
+
2022-04-25 00:31:13,937 epoch 2 - iter 40/88 - loss 0.33045049 - samples/sec: 3.90 - lr: 0.000005
|
| 644 |
+
2022-04-25 00:31:23,091 epoch 2 - iter 48/88 - loss 0.32851558 - samples/sec: 3.50 - lr: 0.000005
|
| 645 |
+
2022-04-25 00:31:31,313 epoch 2 - iter 56/88 - loss 0.32679558 - samples/sec: 3.89 - lr: 0.000005
|
| 646 |
+
2022-04-25 00:31:41,184 epoch 2 - iter 64/88 - loss 0.32379177 - samples/sec: 3.24 - lr: 0.000005
|
| 647 |
+
2022-04-25 00:31:49,757 epoch 2 - iter 72/88 - loss 0.32124627 - samples/sec: 3.73 - lr: 0.000005
|
| 648 |
+
2022-04-25 00:31:57,768 epoch 2 - iter 80/88 - loss 0.32825760 - samples/sec: 4.00 - lr: 0.000004
|
| 649 |
+
2022-04-25 00:32:08,014 epoch 2 - iter 88/88 - loss 0.32124062 - samples/sec: 3.12 - lr: 0.000004
|
| 650 |
+
2022-04-25 00:32:08,017 ----------------------------------------------------------------------------------------------------
|
| 651 |
+
2022-04-25 00:32:08,018 EPOCH 2 done: loss 0.3212 - lr 0.000004
|
| 652 |
+
2022-04-25 00:32:15,400 Evaluating as a multi-label problem: False
|
| 653 |
+
2022-04-25 00:32:15,415 DEV : loss 0.15934991836547852 - f1-score (micro avg) 0.0082
|
| 654 |
+
2022-04-25 00:32:15,428 BAD EPOCHS (no improvement): 4
|
| 655 |
+
2022-04-25 00:32:15,431 ----------------------------------------------------------------------------------------------------
|
| 656 |
+
2022-04-25 00:32:25,133 epoch 3 - iter 8/88 - loss 0.26548392 - samples/sec: 3.30 - lr: 0.000004
|
| 657 |
+
2022-04-25 00:32:33,272 epoch 3 - iter 16/88 - loss 0.28651787 - samples/sec: 3.93 - lr: 0.000004
|
| 658 |
+
2022-04-25 00:32:41,433 epoch 3 - iter 24/88 - loss 0.29010948 - samples/sec: 3.92 - lr: 0.000004
|
| 659 |
+
2022-04-25 00:32:50,243 epoch 3 - iter 32/88 - loss 0.29681501 - samples/sec: 3.63 - lr: 0.000004
|
| 660 |
+
2022-04-25 00:32:59,007 epoch 3 - iter 40/88 - loss 0.29554105 - samples/sec: 3.65 - lr: 0.000004
|
| 661 |
+
2022-04-25 00:33:07,692 epoch 3 - iter 48/88 - loss 0.29343573 - samples/sec: 3.69 - lr: 0.000004
|
| 662 |
+
2022-04-25 00:33:16,189 epoch 3 - iter 56/88 - loss 0.29547981 - samples/sec: 3.77 - lr: 0.000004
|
| 663 |
+
2022-04-25 00:33:25,763 epoch 3 - iter 64/88 - loss 0.28997972 - samples/sec: 3.34 - lr: 0.000004
|
| 664 |
+
2022-04-25 00:33:36,471 epoch 3 - iter 72/88 - loss 0.29000464 - samples/sec: 2.99 - lr: 0.000004
|
| 665 |
+
2022-04-25 00:33:45,481 epoch 3 - iter 80/88 - loss 0.29344732 - samples/sec: 3.55 - lr: 0.000004
|
| 666 |
+
2022-04-25 00:33:53,793 epoch 3 - iter 88/88 - loss 0.29232563 - samples/sec: 3.85 - lr: 0.000004
|
| 667 |
+
2022-04-25 00:33:53,797 ----------------------------------------------------------------------------------------------------
|
| 668 |
+
2022-04-25 00:33:53,798 EPOCH 3 done: loss 0.2923 - lr 0.000004
|
| 669 |
+
2022-04-25 00:34:00,978 Evaluating as a multi-label problem: False
|
| 670 |
+
2022-04-25 00:34:00,991 DEV : loss 0.14386053383350372 - f1-score (micro avg) 0.0664
|
| 671 |
+
2022-04-25 00:34:00,999 BAD EPOCHS (no improvement): 4
|
| 672 |
+
2022-04-25 00:34:01,000 ----------------------------------------------------------------------------------------------------
|
| 673 |
+
2022-04-25 00:34:09,617 epoch 4 - iter 8/88 - loss 0.32142401 - samples/sec: 3.72 - lr: 0.000004
|
| 674 |
+
2022-04-25 00:34:17,886 epoch 4 - iter 16/88 - loss 0.30301646 - samples/sec: 3.87 - lr: 0.000004
|
| 675 |
+
2022-04-25 00:34:27,850 epoch 4 - iter 24/88 - loss 0.28913590 - samples/sec: 3.21 - lr: 0.000004
|
| 676 |
+
2022-04-25 00:34:35,703 epoch 4 - iter 32/88 - loss 0.29200045 - samples/sec: 4.08 - lr: 0.000004
|
| 677 |
+
2022-04-25 00:34:44,383 epoch 4 - iter 40/88 - loss 0.28601870 - samples/sec: 3.69 - lr: 0.000004
|
| 678 |
+
2022-04-25 00:34:53,597 epoch 4 - iter 48/88 - loss 0.28333016 - samples/sec: 3.47 - lr: 0.000004
|
| 679 |
+
2022-04-25 00:35:02,237 epoch 4 - iter 56/88 - loss 0.28101070 - samples/sec: 3.70 - lr: 0.000004
|
| 680 |
+
2022-04-25 00:35:11,887 epoch 4 - iter 64/88 - loss 0.27725419 - samples/sec: 3.32 - lr: 0.000003
|
| 681 |
+
2022-04-25 00:35:20,971 epoch 4 - iter 72/88 - loss 0.27522330 - samples/sec: 3.52 - lr: 0.000003
|
| 682 |
+
2022-04-25 00:35:29,993 epoch 4 - iter 80/88 - loss 0.27767522 - samples/sec: 3.55 - lr: 0.000003
|
| 683 |
+
2022-04-25 00:35:38,121 epoch 4 - iter 88/88 - loss 0.27780342 - samples/sec: 3.94 - lr: 0.000003
|
| 684 |
+
2022-04-25 00:35:38,125 ----------------------------------------------------------------------------------------------------
|
| 685 |
+
2022-04-25 00:35:38,126 EPOCH 4 done: loss 0.2778 - lr 0.000003
|
| 686 |
+
2022-04-25 00:35:45,523 Evaluating as a multi-label problem: False
|
| 687 |
+
2022-04-25 00:35:45,536 DEV : loss 0.13249367475509644 - f1-score (micro avg) 0.1099
|
| 688 |
+
2022-04-25 00:35:45,545 BAD EPOCHS (no improvement): 4
|
| 689 |
+
2022-04-25 00:35:45,547 ----------------------------------------------------------------------------------------------------
|
| 690 |
+
2022-04-25 00:35:55,215 epoch 5 - iter 8/88 - loss 0.26147172 - samples/sec: 3.31 - lr: 0.000003
|
| 691 |
+
2022-04-25 00:36:05,160 epoch 5 - iter 16/88 - loss 0.26559845 - samples/sec: 3.22 - lr: 0.000003
|
| 692 |
+
2022-04-25 00:36:13,857 epoch 5 - iter 24/88 - loss 0.26674131 - samples/sec: 3.68 - lr: 0.000003
|
| 693 |
+
2022-04-25 00:36:22,022 epoch 5 - iter 32/88 - loss 0.26445641 - samples/sec: 3.92 - lr: 0.000003
|
| 694 |
+
2022-04-25 00:36:29,834 epoch 5 - iter 40/88 - loss 0.26849622 - samples/sec: 4.10 - lr: 0.000003
|
| 695 |
+
2022-04-25 00:36:38,499 epoch 5 - iter 48/88 - loss 0.26495720 - samples/sec: 3.69 - lr: 0.000003
|
| 696 |
+
2022-04-25 00:36:46,651 epoch 5 - iter 56/88 - loss 0.26747065 - samples/sec: 3.93 - lr: 0.000003
|
| 697 |
+
2022-04-25 00:36:56,479 epoch 5 - iter 64/88 - loss 0.26716735 - samples/sec: 3.26 - lr: 0.000003
|
| 698 |
+
2022-04-25 00:37:05,247 epoch 5 - iter 72/88 - loss 0.26323866 - samples/sec: 3.65 - lr: 0.000003
|
| 699 |
+
2022-04-25 00:37:14,099 epoch 5 - iter 80/88 - loss 0.26763434 - samples/sec: 3.62 - lr: 0.000003
|
| 700 |
+
2022-04-25 00:37:23,612 epoch 5 - iter 88/88 - loss 0.26510194 - samples/sec: 3.36 - lr: 0.000003
|
| 701 |
+
2022-04-25 00:37:23,615 ----------------------------------------------------------------------------------------------------
|
| 702 |
+
2022-04-25 00:37:23,615 EPOCH 5 done: loss 0.2651 - lr 0.000003
|
| 703 |
+
2022-04-25 00:37:30,711 Evaluating as a multi-label problem: False
|
| 704 |
+
2022-04-25 00:37:30,723 DEV : loss 0.1335981786251068 - f1-score (micro avg) 0.1516
|
| 705 |
+
2022-04-25 00:37:30,734 BAD EPOCHS (no improvement): 4
|
| 706 |
+
2022-04-25 00:37:30,735 ----------------------------------------------------------------------------------------------------
|
| 707 |
+
2022-04-25 00:37:39,100 epoch 6 - iter 8/88 - loss 0.25254979 - samples/sec: 3.83 - lr: 0.000003
|
| 708 |
+
2022-04-25 00:37:48,489 epoch 6 - iter 16/88 - loss 0.24629379 - samples/sec: 3.41 - lr: 0.000003
|
| 709 |
+
2022-04-25 00:37:56,856 epoch 6 - iter 24/88 - loss 0.25016090 - samples/sec: 3.83 - lr: 0.000003
|
| 710 |
+
2022-04-25 00:38:06,647 epoch 6 - iter 32/88 - loss 0.25646469 - samples/sec: 3.27 - lr: 0.000003
|
| 711 |
+
2022-04-25 00:38:14,700 epoch 6 - iter 40/88 - loss 0.25909943 - samples/sec: 3.97 - lr: 0.000003
|
| 712 |
+
2022-04-25 00:38:23,772 epoch 6 - iter 48/88 - loss 0.25850607 - samples/sec: 3.53 - lr: 0.000002
|
| 713 |
+
2022-04-25 00:38:32,983 epoch 6 - iter 56/88 - loss 0.25417190 - samples/sec: 3.48 - lr: 0.000002
|
| 714 |
+
2022-04-25 00:38:42,014 epoch 6 - iter 64/88 - loss 0.25534730 - samples/sec: 3.54 - lr: 0.000002
|
| 715 |
+
2022-04-25 00:38:49,968 epoch 6 - iter 72/88 - loss 0.25617877 - samples/sec: 4.02 - lr: 0.000002
|
| 716 |
+
2022-04-25 00:38:58,183 epoch 6 - iter 80/88 - loss 0.25537613 - samples/sec: 3.90 - lr: 0.000002
|
| 717 |
+
2022-04-25 00:39:07,930 epoch 6 - iter 88/88 - loss 0.25729809 - samples/sec: 3.28 - lr: 0.000002
|
| 718 |
+
2022-04-25 00:39:07,933 ----------------------------------------------------------------------------------------------------
|
| 719 |
+
2022-04-25 00:39:07,934 EPOCH 6 done: loss 0.2573 - lr 0.000002
|
| 720 |
+
2022-04-25 00:39:15,220 Evaluating as a multi-label problem: False
|
| 721 |
+
2022-04-25 00:39:15,238 DEV : loss 0.12874221801757812 - f1-score (micro avg) 0.215
|
| 722 |
+
2022-04-25 00:39:15,250 BAD EPOCHS (no improvement): 4
|
| 723 |
+
2022-04-25 00:39:15,252 ----------------------------------------------------------------------------------------------------
|
| 724 |
+
2022-04-25 00:39:23,920 epoch 7 - iter 8/88 - loss 0.25032306 - samples/sec: 3.69 - lr: 0.000002
|
| 725 |
+
2022-04-25 00:39:32,341 epoch 7 - iter 16/88 - loss 0.24173648 - samples/sec: 3.80 - lr: 0.000002
|
| 726 |
+
2022-04-25 00:39:42,283 epoch 7 - iter 24/88 - loss 0.25674155 - samples/sec: 3.22 - lr: 0.000002
|
| 727 |
+
2022-04-25 00:39:50,287 epoch 7 - iter 32/88 - loss 0.25221355 - samples/sec: 4.00 - lr: 0.000002
|
| 728 |
+
2022-04-25 00:39:58,742 epoch 7 - iter 40/88 - loss 0.25534056 - samples/sec: 3.79 - lr: 0.000002
|
| 729 |
+
2022-04-25 00:40:07,531 epoch 7 - iter 48/88 - loss 0.25396630 - samples/sec: 3.64 - lr: 0.000002
|
| 730 |
+
2022-04-25 00:40:16,857 epoch 7 - iter 56/88 - loss 0.25506091 - samples/sec: 3.43 - lr: 0.000002
|
| 731 |
+
2022-04-25 00:40:26,056 epoch 7 - iter 64/88 - loss 0.25606985 - samples/sec: 3.48 - lr: 0.000002
|
| 732 |
+
2022-04-25 00:40:34,742 epoch 7 - iter 72/88 - loss 0.25690660 - samples/sec: 3.68 - lr: 0.000002
|
| 733 |
+
2022-04-25 00:40:43,201 epoch 7 - iter 80/88 - loss 0.25644415 - samples/sec: 3.78 - lr: 0.000002
|
| 734 |
+
2022-04-25 00:40:53,512 epoch 7 - iter 88/88 - loss 0.25640539 - samples/sec: 3.10 - lr: 0.000002
|
| 735 |
+
2022-04-25 00:40:53,515 ----------------------------------------------------------------------------------------------------
|
| 736 |
+
2022-04-25 00:40:53,516 EPOCH 7 done: loss 0.2564 - lr 0.000002
|
| 737 |
+
2022-04-25 00:40:59,919 Evaluating as a multi-label problem: False
|
| 738 |
+
2022-04-25 00:40:59,934 DEV : loss 0.12849482893943787 - f1-score (micro avg) 0.2546
|
| 739 |
+
2022-04-25 00:40:59,943 BAD EPOCHS (no improvement): 4
|
| 740 |
+
2022-04-25 00:40:59,944 ----------------------------------------------------------------------------------------------------
|
| 741 |
+
2022-04-25 00:41:09,917 epoch 8 - iter 8/88 - loss 0.26072190 - samples/sec: 3.21 - lr: 0.000002
|
| 742 |
+
2022-04-25 00:41:18,102 epoch 8 - iter 16/88 - loss 0.27005318 - samples/sec: 3.91 - lr: 0.000002
|
| 743 |
+
2022-04-25 00:41:26,730 epoch 8 - iter 24/88 - loss 0.26735720 - samples/sec: 3.71 - lr: 0.000002
|
| 744 |
+
2022-04-25 00:41:35,802 epoch 8 - iter 32/88 - loss 0.25981810 - samples/sec: 3.53 - lr: 0.000001
|
| 745 |
+
2022-04-25 00:41:45,065 epoch 8 - iter 40/88 - loss 0.25497924 - samples/sec: 3.46 - lr: 0.000001
|
| 746 |
+
2022-04-25 00:41:53,266 epoch 8 - iter 48/88 - loss 0.25297761 - samples/sec: 3.90 - lr: 0.000001
|
| 747 |
+
2022-04-25 00:42:01,654 epoch 8 - iter 56/88 - loss 0.25588829 - samples/sec: 3.82 - lr: 0.000001
|
| 748 |
+
2022-04-25 00:42:10,833 epoch 8 - iter 64/88 - loss 0.25234574 - samples/sec: 3.49 - lr: 0.000001
|
| 749 |
+
2022-04-25 00:42:20,767 epoch 8 - iter 72/88 - loss 0.25437752 - samples/sec: 3.22 - lr: 0.000001
|
| 750 |
+
2022-04-25 00:42:29,555 epoch 8 - iter 80/88 - loss 0.25358380 - samples/sec: 3.64 - lr: 0.000001
|
| 751 |
+
2022-04-25 00:42:38,444 epoch 8 - iter 88/88 - loss 0.25159043 - samples/sec: 3.60 - lr: 0.000001
|
| 752 |
+
2022-04-25 00:42:38,447 ----------------------------------------------------------------------------------------------------
|
| 753 |
+
2022-04-25 00:42:38,447 EPOCH 8 done: loss 0.2516 - lr 0.000001
|
| 754 |
+
2022-04-25 00:42:45,466 Evaluating as a multi-label problem: False
|
| 755 |
+
2022-04-25 00:42:45,478 DEV : loss 0.13098381459712982 - f1-score (micro avg) 0.2535
|
| 756 |
+
2022-04-25 00:42:45,486 BAD EPOCHS (no improvement): 4
|
| 757 |
+
2022-04-25 00:42:45,488 ----------------------------------------------------------------------------------------------------
|
| 758 |
+
2022-04-25 00:42:55,033 epoch 9 - iter 8/88 - loss 0.22931718 - samples/sec: 3.35 - lr: 0.000001
|
| 759 |
+
2022-04-25 00:43:03,513 epoch 9 - iter 16/88 - loss 0.25355650 - samples/sec: 3.77 - lr: 0.000001
|
| 760 |
+
2022-04-25 00:43:13,870 epoch 9 - iter 24/88 - loss 0.25289254 - samples/sec: 3.09 - lr: 0.000001
|
| 761 |
+
2022-04-25 00:43:22,935 epoch 9 - iter 32/88 - loss 0.24994442 - samples/sec: 3.53 - lr: 0.000001
|
| 762 |
+
2022-04-25 00:43:30,905 epoch 9 - iter 40/88 - loss 0.24795011 - samples/sec: 4.02 - lr: 0.000001
|
| 763 |
+
2022-04-25 00:43:39,312 epoch 9 - iter 48/88 - loss 0.24733180 - samples/sec: 3.81 - lr: 0.000001
|
| 764 |
+
2022-04-25 00:43:47,522 epoch 9 - iter 56/88 - loss 0.24885510 - samples/sec: 3.90 - lr: 0.000001
|
| 765 |
+
2022-04-25 00:43:55,856 epoch 9 - iter 64/88 - loss 0.25085127 - samples/sec: 3.84 - lr: 0.000001
|
| 766 |
+
2022-04-25 00:44:04,511 epoch 9 - iter 72/88 - loss 0.25141658 - samples/sec: 3.70 - lr: 0.000001
|
| 767 |
+
2022-04-25 00:44:13,473 epoch 9 - iter 80/88 - loss 0.25114253 - samples/sec: 3.57 - lr: 0.000001
|
| 768 |
+
2022-04-25 00:44:23,065 epoch 9 - iter 88/88 - loss 0.25032100 - samples/sec: 3.34 - lr: 0.000001
|
| 769 |
+
2022-04-25 00:44:23,068 ----------------------------------------------------------------------------------------------------
|
| 770 |
+
2022-04-25 00:44:23,069 EPOCH 9 done: loss 0.2503 - lr 0.000001
|
| 771 |
+
2022-04-25 00:44:30,828 Evaluating as a multi-label problem: False
|
| 772 |
+
2022-04-25 00:44:30,844 DEV : loss 0.1269032210111618 - f1-score (micro avg) 0.2445
|
| 773 |
+
2022-04-25 00:44:30,854 BAD EPOCHS (no improvement): 4
|
| 774 |
+
2022-04-25 00:44:30,855 ----------------------------------------------------------------------------------------------------
|
| 775 |
+
2022-04-25 00:44:38,190 epoch 10 - iter 8/88 - loss 0.25877504 - samples/sec: 4.36 - lr: 0.000001
|
| 776 |
+
2022-04-25 00:44:47,141 epoch 10 - iter 16/88 - loss 0.26538309 - samples/sec: 3.58 - lr: 0.000000
|
| 777 |
+
2022-04-25 00:44:56,357 epoch 10 - iter 24/88 - loss 0.25992814 - samples/sec: 3.47 - lr: 0.000000
|
| 778 |
+
2022-04-25 00:45:04,805 epoch 10 - iter 32/88 - loss 0.25024608 - samples/sec: 3.79 - lr: 0.000000
|
| 779 |
+
2022-04-25 00:45:12,966 epoch 10 - iter 40/88 - loss 0.25450198 - samples/sec: 3.92 - lr: 0.000000
|
| 780 |
+
2022-04-25 00:45:23,081 epoch 10 - iter 48/88 - loss 0.25508489 - samples/sec: 3.16 - lr: 0.000000
|
| 781 |
+
2022-04-25 00:45:32,191 epoch 10 - iter 56/88 - loss 0.25273411 - samples/sec: 3.51 - lr: 0.000000
|
| 782 |
+
2022-04-25 00:45:40,798 epoch 10 - iter 64/88 - loss 0.25090079 - samples/sec: 3.72 - lr: 0.000000
|
| 783 |
+
2022-04-25 00:45:49,572 epoch 10 - iter 72/88 - loss 0.24954558 - samples/sec: 3.65 - lr: 0.000000
|
| 784 |
+
2022-04-25 00:45:59,254 epoch 10 - iter 80/88 - loss 0.24933938 - samples/sec: 3.31 - lr: 0.000000
|
| 785 |
+
2022-04-25 00:46:08,852 epoch 10 - iter 88/88 - loss 0.24774755 - samples/sec: 3.33 - lr: 0.000000
|
| 786 |
+
2022-04-25 00:46:08,856 ----------------------------------------------------------------------------------------------------
|
| 787 |
+
2022-04-25 00:46:08,857 EPOCH 10 done: loss 0.2477 - lr 0.000000
|
| 788 |
+
2022-04-25 00:46:15,919 Evaluating as a multi-label problem: False
|
| 789 |
+
2022-04-25 00:46:15,935 DEV : loss 0.12706945836544037 - f1-score (micro avg) 0.2495
|
| 790 |
+
2022-04-25 00:46:15,947 BAD EPOCHS (no improvement): 4
|
| 791 |
+
2022-04-25 00:46:19,590 ----------------------------------------------------------------------------------------------------
|
| 792 |
+
2022-04-25 00:46:19,592 Testing using last state of model ...
|
| 793 |
+
2022-04-25 00:46:29,219 Evaluating as a multi-label problem: False
|
| 794 |
+
2022-04-25 00:46:29,232 0.4412 0.2257 0.2986 0.1758
|
| 795 |
+
2022-04-25 00:46:29,232
|
| 796 |
+
Results:
|
| 797 |
+
- F-score (micro) 0.2986
|
| 798 |
+
- F-score (macro) 0.147
|
| 799 |
+
- Accuracy 0.1758
|
| 800 |
+
|
| 801 |
+
By class:
|
| 802 |
+
precision recall f1-score support
|
| 803 |
+
|
| 804 |
+
ORG 0.4718 0.2314 0.3105 687
|
| 805 |
+
LOC 0.3837 0.2171 0.2773 304
|
| 806 |
+
PENT 0.0000 0.0000 0.0000 6
|
| 807 |
+
MISC 0.0000 0.0000 0.0000 0
|
| 808 |
+
|
| 809 |
+
micro avg 0.4412 0.2257 0.2986 997
|
| 810 |
+
macro avg 0.2139 0.1121 0.1470 997
|
| 811 |
+
weighted avg 0.4421 0.2257 0.2985 997
|
| 812 |
+
|
| 813 |
+
2022-04-25 00:46:29,233 ----------------------------------------------------------------------------------------------------
|
weights.txt
ADDED
|
File without changes
|