Add dinov3_vits16 CoreML FP32 model (560×560)
Browse files
README.md
CHANGED
|
@@ -69,21 +69,21 @@ Performance metrics on Apple Silicon:
|
|
| 69 |
|
| 70 |
### CoreML Performance
|
| 71 |
|
| 72 |
-
- **Throughput**:
|
| 73 |
-
- **Latency**:
|
| 74 |
-
- **Min Latency**:
|
| 75 |
-
- **Max Latency**:
|
| 76 |
|
| 77 |
### Speedup vs PyTorch
|
| 78 |
|
| 79 |
-
- **PyTorch**: 9.
|
| 80 |
-
- **CoreML**:
|
| 81 |
-
- **Speedup**: 1.
|
| 82 |
|
| 83 |
### Feature Accuracy
|
| 84 |
|
| 85 |
-
- **Cosine Similarity**: 0.
|
| 86 |
-
- **Correlation**: 0.
|
| 87 |
- **Quality**: ⭐⭐⭐ Very Good - Excellent similarity
|
| 88 |
|
| 89 |
### Model Specifications
|
|
|
|
| 69 |
|
| 70 |
### CoreML Performance
|
| 71 |
|
| 72 |
+
- **Throughput**: 19.02 FPS
|
| 73 |
+
- **Latency**: 52.58 ± 0.44 ms
|
| 74 |
+
- **Min Latency**: 51.96 ms
|
| 75 |
+
- **Max Latency**: 54.40 ms
|
| 76 |
|
| 77 |
### Speedup vs PyTorch
|
| 78 |
|
| 79 |
+
- **PyTorch**: 9.62 FPS
|
| 80 |
+
- **CoreML**: 19.02 FPS
|
| 81 |
+
- **Speedup**: 1.98x faster ⚡
|
| 82 |
|
| 83 |
### Feature Accuracy
|
| 84 |
|
| 85 |
+
- **Cosine Similarity**: 0.9891 (vs PyTorch)
|
| 86 |
+
- **Correlation**: 0.9891
|
| 87 |
- **Quality**: ⭐⭐⭐ Very Good - Excellent similarity
|
| 88 |
|
| 89 |
### Model Specifications
|
benchmark_results.json
CHANGED
|
@@ -1,51 +1,51 @@
|
|
| 1 |
{
|
| 2 |
"pytorch": {
|
| 3 |
-
"fps": 9.
|
| 4 |
-
"avg_time": 0.
|
| 5 |
-
"std_time": 0.
|
| 6 |
-
"min_time": 0.
|
| 7 |
-
"max_time": 0.
|
| 8 |
},
|
| 9 |
"coreml": {
|
| 10 |
-
"fps":
|
| 11 |
-
"avg_time": 0.
|
| 12 |
-
"std_time": 0.
|
| 13 |
-
"min_time": 0.
|
| 14 |
-
"max_time": 0.
|
| 15 |
},
|
| 16 |
"coreml_compute_units": {
|
| 17 |
"all": {
|
| 18 |
-
"fps":
|
| 19 |
-
"avg_time": 0.
|
| 20 |
-
"std_time": 0.
|
| 21 |
-
"min_time": 0.
|
| 22 |
-
"max_time": 0.
|
| 23 |
},
|
| 24 |
"cpu_and_gpu": {
|
| 25 |
-
"fps":
|
| 26 |
-
"avg_time": 0.
|
| 27 |
-
"std_time": 0.
|
| 28 |
-
"min_time": 0.
|
| 29 |
-
"max_time": 0.
|
| 30 |
},
|
| 31 |
"cpu_and_ne": {
|
| 32 |
-
"fps":
|
| 33 |
-
"avg_time": 0.
|
| 34 |
-
"std_time": 0.
|
| 35 |
-
"min_time": 0.
|
| 36 |
-
"max_time": 0.
|
| 37 |
},
|
| 38 |
"cpu_only": {
|
| 39 |
-
"fps": 8.
|
| 40 |
-
"avg_time": 0.
|
| 41 |
-
"std_time": 0.
|
| 42 |
-
"min_time": 0.
|
| 43 |
-
"max_time": 0.
|
| 44 |
}
|
| 45 |
},
|
| 46 |
"comparison": {
|
| 47 |
-
"cosine_similarity": 0.
|
| 48 |
-
"l2_distance": 0.
|
| 49 |
-
"correlation": 0.
|
| 50 |
}
|
| 51 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"pytorch": {
|
| 3 |
+
"fps": 9.624036694810867,
|
| 4 |
+
"avg_time": 0.10390650323883165,
|
| 5 |
+
"std_time": 0.0027939264359063158,
|
| 6 |
+
"min_time": 0.10088958300184458,
|
| 7 |
+
"max_time": 0.12023454200243577
|
| 8 |
},
|
| 9 |
"coreml": {
|
| 10 |
+
"fps": 19.019900704128766,
|
| 11 |
+
"avg_time": 0.05257651002262719,
|
| 12 |
+
"std_time": 0.0004365703703032993,
|
| 13 |
+
"min_time": 0.05196387501200661,
|
| 14 |
+
"max_time": 0.054404666007030755
|
| 15 |
},
|
| 16 |
"coreml_compute_units": {
|
| 17 |
"all": {
|
| 18 |
+
"fps": 19.019900704128766,
|
| 19 |
+
"avg_time": 0.05257651002262719,
|
| 20 |
+
"std_time": 0.0004365703703032993,
|
| 21 |
+
"min_time": 0.05196387501200661,
|
| 22 |
+
"max_time": 0.054404666007030755
|
| 23 |
},
|
| 24 |
"cpu_and_gpu": {
|
| 25 |
+
"fps": 17.96984129410969,
|
| 26 |
+
"avg_time": 0.05564879420096986,
|
| 27 |
+
"std_time": 0.0011291928715886348,
|
| 28 |
+
"min_time": 0.05302037499495782,
|
| 29 |
+
"max_time": 0.057302750006783754
|
| 30 |
},
|
| 31 |
"cpu_and_ne": {
|
| 32 |
+
"fps": 8.98604870549592,
|
| 33 |
+
"avg_time": 0.11128361672337633,
|
| 34 |
+
"std_time": 0.0013816359522091544,
|
| 35 |
+
"min_time": 0.10941429200465791,
|
| 36 |
+
"max_time": 0.11519570800010115
|
| 37 |
},
|
| 38 |
"cpu_only": {
|
| 39 |
+
"fps": 8.836844654098309,
|
| 40 |
+
"avg_time": 0.11316256414400414,
|
| 41 |
+
"std_time": 0.00637503717350401,
|
| 42 |
+
"min_time": 0.10902816700399853,
|
| 43 |
+
"max_time": 0.15590912499465048
|
| 44 |
}
|
| 45 |
},
|
| 46 |
"comparison": {
|
| 47 |
+
"cosine_similarity": 0.9891232848167419,
|
| 48 |
+
"l2_distance": 0.13785669207572937,
|
| 49 |
+
"correlation": 0.98906476330859
|
| 50 |
}
|
| 51 |
}
|
dinov3_feature_comparison.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
dinov3_vits16_560x560_fp32.mlpackage/Data/com.apple.CoreML/model.mlmodel
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 191717
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14010a2eb2dd4d19dc45f8f327c8f57c7d99f5cf82db7a714aca0415086745ad
|
| 3 |
size 191717
|
dinov3_vits16_560x560_fp32.mlpackage/Manifest.json
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
{
|
| 2 |
"fileFormatVersion": "1.0.0",
|
| 3 |
"itemInfoEntries": {
|
| 4 |
-
"
|
| 5 |
-
"author": "com.apple.CoreML",
|
| 6 |
-
"description": "CoreML Model Weights",
|
| 7 |
-
"name": "weights",
|
| 8 |
-
"path": "com.apple.CoreML/weights"
|
| 9 |
-
},
|
| 10 |
-
"DC8074DB-EF60-4EC5-A7AE-C27E02D862B6": {
|
| 11 |
"author": "com.apple.CoreML",
|
| 12 |
"description": "CoreML Model Specification",
|
| 13 |
"name": "model.mlmodel",
|
| 14 |
"path": "com.apple.CoreML/model.mlmodel"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
}
|
| 16 |
},
|
| 17 |
-
"rootModelIdentifier": "
|
| 18 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"fileFormatVersion": "1.0.0",
|
| 3 |
"itemInfoEntries": {
|
| 4 |
+
"A6096C6C-CDF1-4AF6-8C7B-94188E897E7A": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"author": "com.apple.CoreML",
|
| 6 |
"description": "CoreML Model Specification",
|
| 7 |
"name": "model.mlmodel",
|
| 8 |
"path": "com.apple.CoreML/model.mlmodel"
|
| 9 |
+
},
|
| 10 |
+
"AA5395DA-2B1A-4274-92DB-3D99C53DEB7F": {
|
| 11 |
+
"author": "com.apple.CoreML",
|
| 12 |
+
"description": "CoreML Model Weights",
|
| 13 |
+
"name": "weights",
|
| 14 |
+
"path": "com.apple.CoreML/weights"
|
| 15 |
}
|
| 16 |
},
|
| 17 |
+
"rootModelIdentifier": "A6096C6C-CDF1-4AF6-8C7B-94188E897E7A"
|
| 18 |
}
|