sherin joseph roy commited on
Commit
84596d8
Β·
verified Β·
1 Parent(s): ff59405

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +258 -0
README.md ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: AutoML Lite
3
+ emoji: πŸ€–
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.0.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ tags:
12
+ - automl
13
+ - machine-learning
14
+ - deep-learning
15
+ - time-series
16
+ - classification
17
+ - regression
18
+ - feature-engineering
19
+ - interpretability
20
+ - experiment-tracking
21
+ - production
22
+ ---
23
+
24
+ # AutoML Lite πŸ€–
25
+
26
+ **Automated Machine Learning Made Simple**
27
+
28
+ A lightweight, production-ready automated machine learning library that simplifies the entire ML pipeline from data preprocessing to model deployment.
29
+
30
+ ## 🎬 Demo
31
+
32
+ ### AutoML Lite in Action
33
+ ![AutoML Lite Demo](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-lite.gif)
34
+
35
+ ### Generated HTML Reports
36
+ ![AutoML Report Generation](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-lite-report.gif)
37
+
38
+ ### Weights & Biases Integration
39
+ ![W&B Experiment Tracking](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-wandb.gif)
40
+
41
+ ## πŸš€ Quick Start
42
+
43
+ ### Installation
44
+ ```bash
45
+ pip install automl-lite
46
+ ```
47
+
48
+ ### 5-Line ML Pipeline
49
+ ```python
50
+ from automl_lite import AutoMLite
51
+ import pandas as pd
52
+
53
+ # Load your data
54
+ data = pd.read_csv('your_data.csv')
55
+
56
+ # Initialize AutoML (zero configuration!)
57
+ automl = AutoMLite(time_budget=300)
58
+
59
+ # Train and get the best model
60
+ best_model = automl.fit(data, target_column='target')
61
+
62
+ # Make predictions
63
+ predictions = automl.predict(new_data)
64
+ ```
65
+
66
+ ## ✨ Key Features
67
+
68
+ ### 🧠 Intelligent Automation
69
+ - **Auto Feature Engineering**: 11.6x feature expansion (20β†’232 features)
70
+ - **Smart Model Selection**: Tests 15+ algorithms automatically
71
+ - **Hyperparameter Optimization**: Uses Optuna for efficient tuning
72
+ - **Ensemble Methods**: Automatic voting classifiers
73
+
74
+ ### 🏭 Production-Ready
75
+ - **Deep Learning**: TensorFlow and PyTorch integration
76
+ - **Time Series**: ARIMA, Prophet, LSTM forecasting
77
+ - **Advanced Interpretability**: SHAP, LIME, permutation importance
78
+ - **Experiment Tracking**: MLflow, W&B, TensorBoard
79
+ - **Interactive Dashboards**: Real-time monitoring
80
+
81
+ ### πŸ“Š Comprehensive Reporting
82
+ - **Interactive HTML Reports**: Beautiful visualizations
83
+ - **Model Performance Analysis**: Confusion matrices, ROC curves
84
+ - **Feature Importance**: Detailed analysis and correlations
85
+ - **Training History**: Complete logs and metrics
86
+
87
+ ## 🎯 Supported Problem Types
88
+
89
+ - βœ… **Classification** (Binary & Multi-class)
90
+ - βœ… **Regression**
91
+ - βœ… **Time Series Forecasting**
92
+ - βœ… **Deep Learning Tasks**
93
+
94
+ ## πŸ”₯ Performance Metrics
95
+
96
+ ### Production Demo Results
97
+ - **Training Time**: 391.92 seconds for complete pipeline
98
+ - **Best Model**: Random Forest (80.00% accuracy)
99
+ - **Feature Engineering**: 20 β†’ 232 features (11.6x expansion)
100
+ - **Feature Selection**: 132/166 features intelligently selected
101
+ - **Hyperparameter Optimization**: 50 trials with Optuna
102
+
103
+ ## πŸ› οΈ Advanced Usage
104
+
105
+ ### Custom Configuration
106
+ ```python
107
+ config = {
108
+ 'time_budget': 600,
109
+ 'max_models': 20,
110
+ 'cv_folds': 5,
111
+ 'feature_engineering': True,
112
+ 'ensemble_method': 'voting',
113
+ 'interpretability': True
114
+ }
115
+
116
+ automl = AutoMLite(**config)
117
+ ```
118
+
119
+ ### Time Series Forecasting
120
+ ```python
121
+ automl = AutoMLite(problem_type='time_series')
122
+ model = automl.fit(data, target_column='sales', date_column='date')
123
+ forecast = automl.predict_future(periods=30)
124
+ ```
125
+
126
+ ### Deep Learning
127
+ ```python
128
+ automl = AutoMLite(
129
+ include_deep_learning=True,
130
+ deep_learning_framework='tensorflow'
131
+ )
132
+ model = automl.fit(data, target_column='target')
133
+ ```
134
+
135
+ ## πŸ“ˆ CLI Interface
136
+
137
+ ```bash
138
+ # Basic usage
139
+ automl-lite train data.csv --target target_column
140
+
141
+ # With custom config
142
+ automl-lite train data.csv --target target_column --config config.yaml
143
+
144
+ # Generate report
145
+ automl-lite report --model model.pkl --output report.html
146
+ ```
147
+
148
+ ## 🎨 Interactive Dashboard
149
+
150
+ ```python
151
+ from automl_lite.ui import launch_dashboard
152
+ launch_dashboard(automl)
153
+ ```
154
+
155
+ ## πŸ” Model Interpretability
156
+
157
+ ```python
158
+ # Get SHAP values
159
+ shap_values = automl.explain_model(X_test)
160
+
161
+ # Feature importance
162
+ importance = automl.get_feature_importance()
163
+
164
+ # Partial dependence plots
165
+ automl.plot_partial_dependence('feature_name')
166
+ ```
167
+
168
+ ## 🎯 Use Cases
169
+
170
+ ### Perfect For:
171
+ - 🏒 **Data Scientists** - Rapid prototyping
172
+ - πŸš€ **ML Engineers** - Production development
173
+ - πŸ“Š **Analysts** - Quick insights
174
+ - πŸŽ“ **Students** - Learning ML concepts
175
+ - 🏭 **Startups** - Fast MVP development
176
+
177
+ ### Industries:
178
+ - **Finance**: Credit scoring, fraud detection
179
+ - **Healthcare**: Disease prediction, monitoring
180
+ - **E-commerce**: Segmentation, forecasting
181
+ - **Marketing**: Campaign optimization
182
+ - **Manufacturing**: Predictive maintenance
183
+
184
+ ## πŸ”§ Configuration Templates
185
+
186
+ - **Basic**: Quick experiments
187
+ - **Production**: Production deployment
188
+ - **Research**: Extensive search
189
+ - **Customer Churn**: Churn prediction
190
+ - **Fraud Detection**: Fraud detection
191
+ - **House Price**: Real estate prediction
192
+
193
+ ## πŸ“¦ Installation Options
194
+
195
+ ### From PyPI (Recommended)
196
+ ```bash
197
+ pip install automl-lite
198
+ ```
199
+
200
+ ### From Source
201
+ ```bash
202
+ git clone https://github.com/Sherin-SEF-AI/AutoML-Lite.git
203
+ cd AutoML-Lite
204
+ pip install -e .
205
+ ```
206
+
207
+ ## 🀝 Contributing
208
+
209
+ We welcome contributions! Here's how you can help:
210
+
211
+ 1. **Fork the repository**
212
+ 2. **Create a feature branch**
213
+ 3. **Make your changes**
214
+ 4. **Add tests**
215
+ 5. **Submit a pull request**
216
+
217
+ ## πŸ“š Documentation & Resources
218
+
219
+ - πŸ“– **Full Documentation**: [GitHub Wiki](https://github.com/Sherin-SEF-AI/AutoML-Lite/wiki)
220
+ - 🎯 **API Reference**: [API Docs](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/API_REFERENCE.md)
221
+ - πŸ“ **Examples**: [Example Notebooks](https://github.com/Sherin-SEF-AI/AutoML-Lite/tree/main/examples)
222
+ - πŸš€ **Quick Start**: [Installation Guide](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/INSTALLATION.md)
223
+
224
+ ## πŸ’¬ Join the Community
225
+
226
+ - 🌟 **Star the Repository**: [GitHub](https://github.com/Sherin-SEF-AI/AutoML-Lite)
227
+ - πŸ› **Report Issues**: [Issue Tracker](https://github.com/Sherin-SEF-AI/AutoML-Lite/issues)
228
+ - πŸ’‘ **Feature Requests**: [Discussions](https://github.com/Sherin-SEF-AI/AutoML-Lite/discussions)
229
+ - πŸ“§ **Contact**: [email protected]
230
+
231
+ ## πŸ† Why Choose AutoML Lite?
232
+
233
+ | Feature | AutoML Lite | Other Libraries |
234
+ |---------|-------------|-----------------|
235
+ | **Setup Time** | 30 seconds | 30+ minutes |
236
+ | **Configuration** | Zero required | Complex configs |
237
+ | **Production Ready** | βœ… Built-in | ❌ Manual setup |
238
+ | **Deep Learning** | βœ… Integrated | ❌ Separate setup |
239
+ | **Time Series** | βœ… Native support | ❌ Limited |
240
+ | **Interpretability** | βœ… Advanced | ❌ Basic |
241
+ | **Experiment Tracking** | βœ… Multi-platform | ❌ Limited |
242
+ | **Interactive Reports** | βœ… Beautiful HTML | ❌ Basic plots |
243
+
244
+ ## 🎯 Ready to Transform Your ML Workflow?
245
+
246
+ **Stop spending hours on boilerplate code. Start building amazing ML models in minutes!**
247
+
248
+ ```bash
249
+ pip install automl-lite
250
+ ```
251
+
252
+ **Try it now and see the difference!** πŸš€
253
+
254
+ ---
255
+
256
+ *Built with ❀️ by the AutoML Lite community*
257
+
258
+ **Tags**: #python #machinelearning #automl #datascience #ml #ai #automation #productivity #opensource #deeplearning #timeseries #interpretability #experimenttracking #production #deployment