sherin joseph roy
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: AutoML Lite
|
| 3 |
+
emoji: π€
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
tags:
|
| 12 |
+
- automl
|
| 13 |
+
- machine-learning
|
| 14 |
+
- deep-learning
|
| 15 |
+
- time-series
|
| 16 |
+
- classification
|
| 17 |
+
- regression
|
| 18 |
+
- feature-engineering
|
| 19 |
+
- interpretability
|
| 20 |
+
- experiment-tracking
|
| 21 |
+
- production
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# AutoML Lite π€
|
| 25 |
+
|
| 26 |
+
**Automated Machine Learning Made Simple**
|
| 27 |
+
|
| 28 |
+
A lightweight, production-ready automated machine learning library that simplifies the entire ML pipeline from data preprocessing to model deployment.
|
| 29 |
+
|
| 30 |
+
## π¬ Demo
|
| 31 |
+
|
| 32 |
+
### AutoML Lite in Action
|
| 33 |
+

|
| 34 |
+
|
| 35 |
+
### Generated HTML Reports
|
| 36 |
+

|
| 37 |
+
|
| 38 |
+
### Weights & Biases Integration
|
| 39 |
+

|
| 40 |
+
|
| 41 |
+
## π Quick Start
|
| 42 |
+
|
| 43 |
+
### Installation
|
| 44 |
+
```bash
|
| 45 |
+
pip install automl-lite
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### 5-Line ML Pipeline
|
| 49 |
+
```python
|
| 50 |
+
from automl_lite import AutoMLite
|
| 51 |
+
import pandas as pd
|
| 52 |
+
|
| 53 |
+
# Load your data
|
| 54 |
+
data = pd.read_csv('your_data.csv')
|
| 55 |
+
|
| 56 |
+
# Initialize AutoML (zero configuration!)
|
| 57 |
+
automl = AutoMLite(time_budget=300)
|
| 58 |
+
|
| 59 |
+
# Train and get the best model
|
| 60 |
+
best_model = automl.fit(data, target_column='target')
|
| 61 |
+
|
| 62 |
+
# Make predictions
|
| 63 |
+
predictions = automl.predict(new_data)
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
## β¨ Key Features
|
| 67 |
+
|
| 68 |
+
### π§ Intelligent Automation
|
| 69 |
+
- **Auto Feature Engineering**: 11.6x feature expansion (20β232 features)
|
| 70 |
+
- **Smart Model Selection**: Tests 15+ algorithms automatically
|
| 71 |
+
- **Hyperparameter Optimization**: Uses Optuna for efficient tuning
|
| 72 |
+
- **Ensemble Methods**: Automatic voting classifiers
|
| 73 |
+
|
| 74 |
+
### π Production-Ready
|
| 75 |
+
- **Deep Learning**: TensorFlow and PyTorch integration
|
| 76 |
+
- **Time Series**: ARIMA, Prophet, LSTM forecasting
|
| 77 |
+
- **Advanced Interpretability**: SHAP, LIME, permutation importance
|
| 78 |
+
- **Experiment Tracking**: MLflow, W&B, TensorBoard
|
| 79 |
+
- **Interactive Dashboards**: Real-time monitoring
|
| 80 |
+
|
| 81 |
+
### π Comprehensive Reporting
|
| 82 |
+
- **Interactive HTML Reports**: Beautiful visualizations
|
| 83 |
+
- **Model Performance Analysis**: Confusion matrices, ROC curves
|
| 84 |
+
- **Feature Importance**: Detailed analysis and correlations
|
| 85 |
+
- **Training History**: Complete logs and metrics
|
| 86 |
+
|
| 87 |
+
## π― Supported Problem Types
|
| 88 |
+
|
| 89 |
+
- β
**Classification** (Binary & Multi-class)
|
| 90 |
+
- β
**Regression**
|
| 91 |
+
- β
**Time Series Forecasting**
|
| 92 |
+
- β
**Deep Learning Tasks**
|
| 93 |
+
|
| 94 |
+
## π₯ Performance Metrics
|
| 95 |
+
|
| 96 |
+
### Production Demo Results
|
| 97 |
+
- **Training Time**: 391.92 seconds for complete pipeline
|
| 98 |
+
- **Best Model**: Random Forest (80.00% accuracy)
|
| 99 |
+
- **Feature Engineering**: 20 β 232 features (11.6x expansion)
|
| 100 |
+
- **Feature Selection**: 132/166 features intelligently selected
|
| 101 |
+
- **Hyperparameter Optimization**: 50 trials with Optuna
|
| 102 |
+
|
| 103 |
+
## π οΈ Advanced Usage
|
| 104 |
+
|
| 105 |
+
### Custom Configuration
|
| 106 |
+
```python
|
| 107 |
+
config = {
|
| 108 |
+
'time_budget': 600,
|
| 109 |
+
'max_models': 20,
|
| 110 |
+
'cv_folds': 5,
|
| 111 |
+
'feature_engineering': True,
|
| 112 |
+
'ensemble_method': 'voting',
|
| 113 |
+
'interpretability': True
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
automl = AutoMLite(**config)
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
### Time Series Forecasting
|
| 120 |
+
```python
|
| 121 |
+
automl = AutoMLite(problem_type='time_series')
|
| 122 |
+
model = automl.fit(data, target_column='sales', date_column='date')
|
| 123 |
+
forecast = automl.predict_future(periods=30)
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
### Deep Learning
|
| 127 |
+
```python
|
| 128 |
+
automl = AutoMLite(
|
| 129 |
+
include_deep_learning=True,
|
| 130 |
+
deep_learning_framework='tensorflow'
|
| 131 |
+
)
|
| 132 |
+
model = automl.fit(data, target_column='target')
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## π CLI Interface
|
| 136 |
+
|
| 137 |
+
```bash
|
| 138 |
+
# Basic usage
|
| 139 |
+
automl-lite train data.csv --target target_column
|
| 140 |
+
|
| 141 |
+
# With custom config
|
| 142 |
+
automl-lite train data.csv --target target_column --config config.yaml
|
| 143 |
+
|
| 144 |
+
# Generate report
|
| 145 |
+
automl-lite report --model model.pkl --output report.html
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
## π¨ Interactive Dashboard
|
| 149 |
+
|
| 150 |
+
```python
|
| 151 |
+
from automl_lite.ui import launch_dashboard
|
| 152 |
+
launch_dashboard(automl)
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
## π Model Interpretability
|
| 156 |
+
|
| 157 |
+
```python
|
| 158 |
+
# Get SHAP values
|
| 159 |
+
shap_values = automl.explain_model(X_test)
|
| 160 |
+
|
| 161 |
+
# Feature importance
|
| 162 |
+
importance = automl.get_feature_importance()
|
| 163 |
+
|
| 164 |
+
# Partial dependence plots
|
| 165 |
+
automl.plot_partial_dependence('feature_name')
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
## π― Use Cases
|
| 169 |
+
|
| 170 |
+
### Perfect For:
|
| 171 |
+
- π’ **Data Scientists** - Rapid prototyping
|
| 172 |
+
- π **ML Engineers** - Production development
|
| 173 |
+
- π **Analysts** - Quick insights
|
| 174 |
+
- π **Students** - Learning ML concepts
|
| 175 |
+
- π **Startups** - Fast MVP development
|
| 176 |
+
|
| 177 |
+
### Industries:
|
| 178 |
+
- **Finance**: Credit scoring, fraud detection
|
| 179 |
+
- **Healthcare**: Disease prediction, monitoring
|
| 180 |
+
- **E-commerce**: Segmentation, forecasting
|
| 181 |
+
- **Marketing**: Campaign optimization
|
| 182 |
+
- **Manufacturing**: Predictive maintenance
|
| 183 |
+
|
| 184 |
+
## π§ Configuration Templates
|
| 185 |
+
|
| 186 |
+
- **Basic**: Quick experiments
|
| 187 |
+
- **Production**: Production deployment
|
| 188 |
+
- **Research**: Extensive search
|
| 189 |
+
- **Customer Churn**: Churn prediction
|
| 190 |
+
- **Fraud Detection**: Fraud detection
|
| 191 |
+
- **House Price**: Real estate prediction
|
| 192 |
+
|
| 193 |
+
## π¦ Installation Options
|
| 194 |
+
|
| 195 |
+
### From PyPI (Recommended)
|
| 196 |
+
```bash
|
| 197 |
+
pip install automl-lite
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
### From Source
|
| 201 |
+
```bash
|
| 202 |
+
git clone https://github.com/Sherin-SEF-AI/AutoML-Lite.git
|
| 203 |
+
cd AutoML-Lite
|
| 204 |
+
pip install -e .
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
## π€ Contributing
|
| 208 |
+
|
| 209 |
+
We welcome contributions! Here's how you can help:
|
| 210 |
+
|
| 211 |
+
1. **Fork the repository**
|
| 212 |
+
2. **Create a feature branch**
|
| 213 |
+
3. **Make your changes**
|
| 214 |
+
4. **Add tests**
|
| 215 |
+
5. **Submit a pull request**
|
| 216 |
+
|
| 217 |
+
## π Documentation & Resources
|
| 218 |
+
|
| 219 |
+
- π **Full Documentation**: [GitHub Wiki](https://github.com/Sherin-SEF-AI/AutoML-Lite/wiki)
|
| 220 |
+
- π― **API Reference**: [API Docs](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/API_REFERENCE.md)
|
| 221 |
+
- π **Examples**: [Example Notebooks](https://github.com/Sherin-SEF-AI/AutoML-Lite/tree/main/examples)
|
| 222 |
+
- π **Quick Start**: [Installation Guide](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/INSTALLATION.md)
|
| 223 |
+
|
| 224 |
+
## π¬ Join the Community
|
| 225 |
+
|
| 226 |
+
- π **Star the Repository**: [GitHub](https://github.com/Sherin-SEF-AI/AutoML-Lite)
|
| 227 |
+
- π **Report Issues**: [Issue Tracker](https://github.com/Sherin-SEF-AI/AutoML-Lite/issues)
|
| 228 |
+
- π‘ **Feature Requests**: [Discussions](https://github.com/Sherin-SEF-AI/AutoML-Lite/discussions)
|
| 229 |
+
- π§ **Contact**: [email protected]
|
| 230 |
+
|
| 231 |
+
## π Why Choose AutoML Lite?
|
| 232 |
+
|
| 233 |
+
| Feature | AutoML Lite | Other Libraries |
|
| 234 |
+
|---------|-------------|-----------------|
|
| 235 |
+
| **Setup Time** | 30 seconds | 30+ minutes |
|
| 236 |
+
| **Configuration** | Zero required | Complex configs |
|
| 237 |
+
| **Production Ready** | β
Built-in | β Manual setup |
|
| 238 |
+
| **Deep Learning** | β
Integrated | β Separate setup |
|
| 239 |
+
| **Time Series** | β
Native support | β Limited |
|
| 240 |
+
| **Interpretability** | β
Advanced | β Basic |
|
| 241 |
+
| **Experiment Tracking** | β
Multi-platform | β Limited |
|
| 242 |
+
| **Interactive Reports** | β
Beautiful HTML | β Basic plots |
|
| 243 |
+
|
| 244 |
+
## π― Ready to Transform Your ML Workflow?
|
| 245 |
+
|
| 246 |
+
**Stop spending hours on boilerplate code. Start building amazing ML models in minutes!**
|
| 247 |
+
|
| 248 |
+
```bash
|
| 249 |
+
pip install automl-lite
|
| 250 |
+
```
|
| 251 |
+
|
| 252 |
+
**Try it now and see the difference!** π
|
| 253 |
+
|
| 254 |
+
---
|
| 255 |
+
|
| 256 |
+
*Built with β€οΈ by the AutoML Lite community*
|
| 257 |
+
|
| 258 |
+
**Tags**: #python #machinelearning #automl #datascience #ml #ai #automation #productivity #opensource #deeplearning #timeseries #interpretability #experimenttracking #production #deployment
|