--- title: AutoML Lite emoji: 🤖 colorFrom: blue colorTo: purple sdk: gradio sdk_version: 4.0.0 app_file: app.py pinned: false license: mit tags: - automl - machine-learning - deep-learning - time-series - classification - regression - feature-engineering - interpretability - experiment-tracking - production --- # AutoML Lite 🤖 **Automated Machine Learning Made Simple** A lightweight, production-ready automated machine learning library that simplifies the entire ML pipeline from data preprocessing to model deployment. ## 🎬 Demo ### AutoML Lite in Action ![AutoML Lite Demo](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-lite.gif) ### Generated HTML Reports ![AutoML Report Generation](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-lite-report.gif) ### Weights & Biases Integration ![W&B Experiment Tracking](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-wandb.gif) ## 🚀 Quick Start ### Installation ```bash pip install automl-lite ``` ### 5-Line ML Pipeline ```python from automl_lite import AutoMLite import pandas as pd # Load your data data = pd.read_csv('your_data.csv') # Initialize AutoML (zero configuration!) automl = AutoMLite(time_budget=300) # Train and get the best model best_model = automl.fit(data, target_column='target') # Make predictions predictions = automl.predict(new_data) ``` ## ✨ Key Features ### 🧠 Intelligent Automation - **Auto Feature Engineering**: 11.6x feature expansion (20→232 features) - **Smart Model Selection**: Tests 15+ algorithms automatically - **Hyperparameter Optimization**: Uses Optuna for efficient tuning - **Ensemble Methods**: Automatic voting classifiers ### 🏭 Production-Ready - **Deep Learning**: TensorFlow and PyTorch integration - **Time Series**: ARIMA, Prophet, LSTM forecasting - **Advanced Interpretability**: SHAP, LIME, permutation importance - **Experiment Tracking**: MLflow, W&B, TensorBoard - **Interactive Dashboards**: Real-time monitoring ### 📊 Comprehensive Reporting - **Interactive HTML Reports**: Beautiful visualizations - **Model Performance Analysis**: Confusion matrices, ROC curves - **Feature Importance**: Detailed analysis and correlations - **Training History**: Complete logs and metrics ## 🎯 Supported Problem Types - ✅ **Classification** (Binary & Multi-class) - ✅ **Regression** - ✅ **Time Series Forecasting** - ✅ **Deep Learning Tasks** ## 🔥 Performance Metrics ### Production Demo Results - **Training Time**: 391.92 seconds for complete pipeline - **Best Model**: Random Forest (80.00% accuracy) - **Feature Engineering**: 20 → 232 features (11.6x expansion) - **Feature Selection**: 132/166 features intelligently selected - **Hyperparameter Optimization**: 50 trials with Optuna ## 🛠️ Advanced Usage ### Custom Configuration ```python config = { 'time_budget': 600, 'max_models': 20, 'cv_folds': 5, 'feature_engineering': True, 'ensemble_method': 'voting', 'interpretability': True } automl = AutoMLite(**config) ``` ### Time Series Forecasting ```python automl = AutoMLite(problem_type='time_series') model = automl.fit(data, target_column='sales', date_column='date') forecast = automl.predict_future(periods=30) ``` ### Deep Learning ```python automl = AutoMLite( include_deep_learning=True, deep_learning_framework='tensorflow' ) model = automl.fit(data, target_column='target') ``` ## 📈 CLI Interface ```bash # Basic usage automl-lite train data.csv --target target_column # With custom config automl-lite train data.csv --target target_column --config config.yaml # Generate report automl-lite report --model model.pkl --output report.html ``` ## 🎨 Interactive Dashboard ```python from automl_lite.ui import launch_dashboard launch_dashboard(automl) ``` ## 🔍 Model Interpretability ```python # Get SHAP values shap_values = automl.explain_model(X_test) # Feature importance importance = automl.get_feature_importance() # Partial dependence plots automl.plot_partial_dependence('feature_name') ``` ## 🎯 Use Cases ### Perfect For: - 🏢 **Data Scientists** - Rapid prototyping - 🚀 **ML Engineers** - Production development - 📊 **Analysts** - Quick insights - 🎓 **Students** - Learning ML concepts - 🏭 **Startups** - Fast MVP development ### Industries: - **Finance**: Credit scoring, fraud detection - **Healthcare**: Disease prediction, monitoring - **E-commerce**: Segmentation, forecasting - **Marketing**: Campaign optimization - **Manufacturing**: Predictive maintenance ## 🔧 Configuration Templates - **Basic**: Quick experiments - **Production**: Production deployment - **Research**: Extensive search - **Customer Churn**: Churn prediction - **Fraud Detection**: Fraud detection - **House Price**: Real estate prediction ## 📦 Installation Options ### From PyPI (Recommended) ```bash pip install automl-lite ``` ### From Source ```bash git clone https://github.com/Sherin-SEF-AI/AutoML-Lite.git cd AutoML-Lite pip install -e . ``` ## 🤝 Contributing We welcome contributions! Here's how you can help: 1. **Fork the repository** 2. **Create a feature branch** 3. **Make your changes** 4. **Add tests** 5. **Submit a pull request** ## 📚 Documentation & Resources - 📖 **Full Documentation**: [GitHub Wiki](https://github.com/Sherin-SEF-AI/AutoML-Lite/wiki) - 🎯 **API Reference**: [API Docs](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/API_REFERENCE.md) - 📝 **Examples**: [Example Notebooks](https://github.com/Sherin-SEF-AI/AutoML-Lite/tree/main/examples) - 🚀 **Quick Start**: [Installation Guide](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/INSTALLATION.md) ## 💬 Join the Community - 🌟 **Star the Repository**: [GitHub](https://github.com/Sherin-SEF-AI/AutoML-Lite) - 🐛 **Report Issues**: [Issue Tracker](https://github.com/Sherin-SEF-AI/AutoML-Lite/issues) - 💡 **Feature Requests**: [Discussions](https://github.com/Sherin-SEF-AI/AutoML-Lite/discussions) - 📧 **Contact**: sherin.joseph2217@gmail.com ## 🏆 Why Choose AutoML Lite? | Feature | AutoML Lite | Other Libraries | |---------|-------------|-----------------| | **Setup Time** | 30 seconds | 30+ minutes | | **Configuration** | Zero required | Complex configs | | **Production Ready** | ✅ Built-in | ❌ Manual setup | | **Deep Learning** | ✅ Integrated | ❌ Separate setup | | **Time Series** | ✅ Native support | ❌ Limited | | **Interpretability** | ✅ Advanced | ❌ Basic | | **Experiment Tracking** | ✅ Multi-platform | ❌ Limited | | **Interactive Reports** | ✅ Beautiful HTML | ❌ Basic plots | ## 🎯 Ready to Transform Your ML Workflow? **Stop spending hours on boilerplate code. Start building amazing ML models in minutes!** ```bash pip install automl-lite ``` **Try it now and see the difference!** 🚀 --- *Built with ❤️ by the AutoML Lite community* **Tags**: #python #machinelearning #automl #datascience #ml #ai #automation #productivity #opensource #deeplearning #timeseries #interpretability #experimenttracking #production #deployment