--- library_name: transformers language: - fr license: apache-2.0 base_model: StephaneBah/whisper-small-rad-fr1.1 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Fr - Radiologie2.0 Encoder-Layer[0:3]+ LoRa(VO; FFN) results: [] --- # Whisper Small Fr - Radiologie2.0 Encoder-Layer[0:3]+ LoRa(VO; FFN) This model is a fine-tuned version of [StephaneBah/whisper-small-rad-fr1.1](https://huggingface.co/StephaneBah/whisper-small-rad-fr1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8274 - Wer: 34.4912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 6 - seed: 3407 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 6.25 | 100 | 0.8132 | 34.6130 | | No log | 12.5 | 200 | 0.8152 | 34.3083 | | No log | 18.75 | 300 | 0.8176 | 34.6740 | | No log | 25.0 | 400 | 0.8215 | 34.3083 | | 0.0001 | 31.25 | 500 | 0.8223 | 34.5521 | | 0.0001 | 37.5 | 600 | 0.8245 | 34.5521 | | 0.0001 | 43.75 | 700 | 0.8261 | 34.4912 | | 0.0001 | 50.0 | 800 | 0.8273 | 34.4912 | | 0.0001 | 56.25 | 900 | 0.8268 | 34.4912 | | 0.0 | 62.5 | 1000 | 0.8274 | 34.4912 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2