Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- TheFinAI/Fino1_Reasoning_Path_FinQA_v2
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- Qwen/Qwen2.5-14B-Instruct
|
| 9 |
+
pipeline_tag: text-generation
|
| 10 |
+
---
|
| 11 |
+
# 🦙 Fino1-14B
|
| 12 |
+
|
| 13 |
+
**Fino1-14B** is a fine-tuned version of **Qwen2.5-14B-Instruct**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA_v2**, enhancing its capabilities in **financial reasoning tasks**.
|
| 14 |
+
Check our paper arxiv.org/abs/2502.08127 for more details.
|
| 15 |
+
|
| 16 |
+
## 📌 Model Details
|
| 17 |
+
- **Model Name**: `Fino1-14B`
|
| 18 |
+
- **Base Model**: `Qwen2.5-14B-Instruct`
|
| 19 |
+
- **Fine-Tuned On**: `TheFinAI/Fino1_Reasoning_Path_FinQA_v2` Derived from multiple financial dataset.
|
| 20 |
+
- **Training Method**: SFT and RF
|
| 21 |
+
- **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`
|
| 22 |
+
- **Tokenizer**: Inherited from `Qwen/Qwen2.5-14B-Instruct`
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## 📊 Training Configuration
|
| 26 |
+
- **Training Hardware**: `GPU: [e.g., 4xH100]`
|
| 27 |
+
- **Batch Size**: `[e.g., 16]`
|
| 28 |
+
- **Learning Rate**: `[e.g., 2e-5]`
|
| 29 |
+
- **Epochs**: `[e.g., 3]`
|
| 30 |
+
- **Optimizer**: `[e.g., AdamW, LAMB]`
|
| 31 |
+
|
| 32 |
+
## 🔧 Usage
|
| 33 |
+
To use `Fino1-14B` with Hugging Face's `transformers` library:
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 37 |
+
|
| 38 |
+
model_name = "TheFinAI/Fino1-14B"
|
| 39 |
+
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 41 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 42 |
+
|
| 43 |
+
input_text = "What is the results of 3-5?"
|
| 44 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 45 |
+
|
| 46 |
+
output = model.generate(**inputs, max_new_tokens=200)
|
| 47 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## 💡 Citation
|
| 51 |
+
|
| 52 |
+
If you use this model in your research, please cite:
|
| 53 |
+
```python
|
| 54 |
+
@article{qian2025fino1,
|
| 55 |
+
title={Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance},
|
| 56 |
+
author={Qian, Lingfei and Zhou, Weipeng and Wang, Yan and Peng, Xueqing and Huang, Jimin and Xie, Qianqian},
|
| 57 |
+
journal={arXiv preprint arXiv:2502.08127},
|
| 58 |
+
year={2025}
|
| 59 |
+
}
|