Alexislhb nielsr HF Staff commited on
Commit
c81fc44
·
verified ·
1 Parent(s): 1517266

Improve model card: Add pipeline tag, library name, abstract, and external links (#1)

Browse files

- Improve model card: Add pipeline tag, library name, abstract, and external links (ce1e28d3f5a3ff7ca69f9c863168bbcffdbde477)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +121 -7
README.md CHANGED
@@ -1,18 +1,32 @@
1
  ---
2
- license: apache-2.0
3
  base_model:
4
  - Qwen/Qwen2.5-VL-3B-Instruct
 
5
  tags:
6
  - vision-language
7
  - cinematography
8
  - shotbench
 
 
9
  ---
10
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ## Model description
12
 
13
- This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), trained by supervised fine-tuning and GRPO on the largest and high-quality dataset for cinematic language understanding to date. It currently achieves state-of-the-art performance on [ShotBench](https://vchitect.github.io/ShotBench-project/), a comprehensive benchmark for evaluating cinematography understanding in vision-language models.
14
- Please visit our [paper](https://arxiv.org/abs/2506.21356) for more details.
15
- ### Demo Code
16
 
17
  **Image**
18
  ```python
@@ -95,9 +109,16 @@ processor = AutoProcessor.from_pretrained(
95
  )
96
 
97
  question = (
98
- "What's the camera movement in this movie shot?\n"
99
- "Options:\nA. Boom down\nB. Boom up\nC. Push in\nD. Pull out\n"
100
- "Please select the most likely answer from the options above.\n"
 
 
 
 
 
 
 
101
  )
102
 
103
  msgs = [
@@ -125,4 +146,97 @@ with torch.inference_mode():
125
 
126
  trimmed = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)]
127
  print(processor.batch_decode(trimmed, skip_special_tokens=True)[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  ```
 
1
  ---
 
2
  base_model:
3
  - Qwen/Qwen2.5-VL-3B-Instruct
4
+ license: apache-2.0
5
  tags:
6
  - vision-language
7
  - cinematography
8
  - shotbench
9
+ pipeline_tag: image-text-to-text
10
+ library_name: transformers
11
  ---
12
 
13
+ # ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models
14
+
15
+ This repository contains **ShotVL-3B**, a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), developed for expert-level cinematic understanding.
16
+
17
+ * **Paper:** [ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models](https://arxiv.org/abs/2506.21356)
18
+ * **Project Page:** [https://vchitect.github.io/ShotBench-project/](https://vchitect.github.io/ShotBench-project/)
19
+ * **Code:** [https://github.com/Alexios-hub/ShotBench](https://github.com/Alexios-hub/ShotBench)
20
+
21
+ ## Abstract
22
+
23
+ Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce ShotBench, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct ShotQA, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop ShotVL through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new state-of-the-art performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.
24
+
25
  ## Model description
26
 
27
+ This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), trained by supervised fine-tuning and GRPO on the largest and high-quality dataset for cinematic language understanding to date. It currently achieves state-of-the-art performance on [ShotBench](https://vchitect.github.io/ShotBench-project/), a comprehensive benchmark for evaluating cinematography understanding in vision-language models.
28
+
29
+ ### Demo Code
30
 
31
  **Image**
32
  ```python
 
109
  )
110
 
111
  question = (
112
+ "What's the camera movement in this movie shot?
113
+ "
114
+ "Options:
115
+ A. Boom down
116
+ B. Boom up
117
+ C. Push in
118
+ D. Pull out
119
+ "
120
+ "Please select the most likely answer from the options above.
121
+ "
122
  )
123
 
124
  msgs = [
 
146
 
147
  trimmed = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)]
148
  print(processor.batch_decode(trimmed, skip_special_tokens=True)[0])
149
+ ```
150
+
151
+ ## Evaluation Results
152
+
153
+ <div align="center">
154
+ <table>
155
+ <caption>
156
+ <small>
157
+ Abbreviations:&nbsp;
158
+ SS = <em>Shot&nbsp;Size</em>,&nbsp;
159
+ SF = <em>Shot&nbsp;Framing</em>,&nbsp;
160
+ CA = <em>Camera&nbsp;Angle</em>,&nbsp;
161
+ LS = <em>Lens&nbsp;Size</em>,&nbsp;
162
+ LT = <em>Lighting&nbsp;Type</em>,&nbsp;
163
+ LC = <em>Lighting&nbsp;Conditions</em>,&nbsp;
164
+ SC = <em>Shot&nbsp;Composition</em>,&nbsp;
165
+ CM = <em>Camera&nbsp;Movement</em>.&nbsp;
166
+ <u>Underline</u> marks previous best in each group.<br>
167
+ <strong>Our <em>ShotVL</em> models establish new SOTA.</strong>
168
+ </small>
169
+ </caption><thead>
170
+ <tr>
171
+ <th>Models</th><th>SS</th><th>SF</th><th>CA</th><th>LS</th><th>LT</th>
172
+ <th>LC</th><th>SC</th><th>CM</th><th>Avg</th>
173
+ </tr>
174
+ </thead><tbody>
175
+ <tr><th colspan="10"><em>Open-Sourced&nbsp;VLMs</em></th></tr>
176
+ <tr><td>Qwen2.5-VL-3B-Instruct</td><td>54.6</td><td>56.6</td><td>43.1</td><td>36.6</td><td>59.3</td><td>45.1</td><td>41.5</td><td>31.9</td><td>46.1</td></tr>
177
+ <tr><td>Qwen2.5-VL-7B-Instruct</td><td>69.1</td><td>73.5</td><td>53.2</td><td>47.0</td><td>60.5</td><td>47.4</td><td>49.9</td><td>30.2</td><td>53.8</td></tr>
178
+ <tr><td>LLaVA-NeXT-Video-7B</td><td>35.9</td><td>37.1</td><td>32.5</td><td>27.8</td><td>50.9</td><td>31.7</td><td>28.0</td><td>31.3</td><td>34.4</td></tr>
179
+ <tr><td>LLaVA-Video-7B-Qwen2</td><td>56.9</td><td>65.4</td><td>45.1</td><td>36.0</td><td>63.5</td><td>45.4</td><td>37.4</td><td>35.3</td><td>48.1</td></tr>
180
+ <tr><td>LLaVA-Onevision-Qwen2-7B-Ov-Chat</td><td>58.4</td><td>71.0</td><td>52.3</td><td>38.7</td><td>59.5</td><td>44.9</td><td>50.9</td><td>39.7</td><td>51.9</td></tr>
181
+ <tr><td>InternVL2.5-8B</td><td>56.3</td><td>70.3</td><td>50.8</td><td>41.1</td><td>60.2</td><td>45.1</td><td>50.1</td><td>33.6</td><td>50.9</td></tr>
182
+ <tr><td>InternVL3-2B</td><td>56.3</td><td>56.0</td><td>44.4</td><td>34.6</td><td>56.8</td><td>44.6</td><td>43.0</td><td>38.1</td><td>46.7</td></tr>
183
+ <tr><td>InternVL3-8B</td><td>62.1</td><td>65.8</td><td>46.8</td><td>42.9</td><td>58.0</td><td>44.3</td><td>46.8</td><td>44.2</td><td>51.4</td></tr>
184
+ <tr><td>InternVL3-14B</td><td>59.6</td><td>82.2</td><td>55.4</td><td>40.7</td><td>61.7</td><td>44.6</td><td>51.1</td><td>38.2</td><td>54.2</td></tr>
185
+ <tr><td>Internlm-xcomposer2d5-7B</td><td>51.1</td><td>71.0</td><td>39.8</td><td>32.7</td><td>59.3</td><td>35.7</td><td>35.7</td><td>38.8</td><td>45.5</td></tr>
186
+ <tr><td>Ovis2-8B</td><td>35.9</td><td>37.1</td><td>32.5</td><td>27.8</td><td>50.9</td><td>31.7</td><td>28.0</td><td>35.3</td><td>34.9</td></tr>
187
+ <tr><td>VILA1.5-3B</td><td>33.4</td><td>44.9</td><td>32.1</td><td>28.6</td><td>50.6</td><td>35.7</td><td>28.4</td><td>21.5</td><td>34.4</td></tr>
188
+ <tr><td>VILA1.5-8B</td><td>40.6</td><td>44.5</td><td>39.1</td><td>29.7</td><td>48.9</td><td>32.9</td><td>34.4</td><td>36.9</td><td>38.4</td></tr>
189
+ <tr><td>VILA1.5-13B</td><td>36.7</td><td>54.6</td><td>40.7</td><td>34.8</td><td>52.8</td><td>35.4</td><td>34.2</td><td>31.3</td><td>40.1</td></tr>
190
+ <tr><td>Instructblip-vicuna-7B</td><td>27.0</td><td>27.9</td><td>34.5</td><td>29.4</td><td>44.4</td><td>29.7</td><td>27.1</td><td>25.0</td><td>30.6</td></tr>
191
+ <tr><td>Instructblip-vicuna-13B</td><td>26.8</td><td>29.2</td><td>27.9</td><td>28.0</td><td>39.0</td><td>24.0</td><td>27.1</td><td>22.0</td><td>28.0</td></tr>
192
+ <tr><td>InternVL2.5-38B</td><td>67.8</td><td><u>85.4</u></td><td>55.4</td><td>41.7</td><td>61.7</td><td>48.9</td><td>52.4</td><td>44.0</td><td>57.2</td></tr>
193
+ <tr><td>InternVL3-38B</td><td>68.0</td><td>84.0</td><td>51.9</td><td>43.6</td><td>64.4</td><td>46.9</td><td>54.7</td><td>44.6</td><td>57.3</td></tr>
194
+ <tr><td>Qwen2.5-VL-32B-Instruct</td><td>62.3</td><td>76.6</td><td>51.0</td><td>48.3</td><td>61.7</td><td>44.0</td><td>52.2</td><td>43.8</td><td>55.0</td></tr>
195
+ <tr><td>Qwen2.5-VL-72B-Instruct</td><td><u>75.1</u></td><td>82.9</td><td>56.7</td><td>46.8</td><td>59.0</td><td><u>49.4</u></td><td>54.1</td><td><u>48.9</u></td><td>59.1</td></tr>
196
+ <tr><td>InternVL3-78B</td><td>69.7</td><td>80.0</td><td>54.5</td><td>44.0</td><td><u>65.5</u></td><td>47.4</td><td>51.8</td><td>44.4</td><td>57.2</td></tr>
197
+ <tr><th colspan="10"><em>Proprietary&nbsp;VLMs</em></th></tr>
198
+ <tr><td>Gemini-2.0-flash</td><td>48.9</td><td>75.5</td><td>44.6</td><td>31.9</td><td>62.2</td><td>48.9</td><td>52.4</td><td>47.4</td><td>51.5</td></tr>
199
+ <tr><td>Gemini-2.5-flash-preview-04-17</td><td>57.7</td><td>82.9</td><td>51.4</td><td>43.8</td><td>65.2</td><td>45.7</td><td>45.9</td><td>43.5</td><td>54.5</td></tr>
200
+ <tr><td>GPT-4o</td><td>69.3</td><td>83.1</td><td><u>58.2</u></td><td><u>48.9</u></td><td>63.2</td><td>48.0</td><td><u>55.2</u></td><td>48.3</td><td><u>59.3</u></td></tr>
201
+ <tr><th colspan="10"><em>Ours</em></th></tr>
202
+ <tr>
203
+ <td>ShotVL-3B
204
+ <a href="https://huggingface.co/Vchitect/ShotVL-3B">
205
+ <img src="https://img.shields.io/badge/Model-HF-yellow?logo=huggingface" alt="HF">
206
+ </a>
207
+ </td>
208
+ <td>77.9</td><td>85.6</td><td>68.8</td><td>59.3</td><td>65.7</td>
209
+ <td>53.1</td><td>57.4</td><td>51.7</td><td>65.1</td>
210
+ </tr>
211
+ <tr>
212
+ <td>ShotVL-7B
213
+ <a href="https://huggingface.co/Vchitect/ShotVL-7B">
214
+ <img src="https://img.shields.io/badge/Model-HF-yellow?logo=huggingface" alt="HF">
215
+ </a>
216
+ </td>
217
+ <td>81.2</td><td>90.1</td><td>78.0</td><td>68.5</td><td>70.1</td>
218
+ <td>64.3</td><td>45.7</td><td>62.9</td><td>70.1</td>
219
+ </tr> </tbody>
220
+ </table></div>
221
+
222
+ ## Open-Sourcing Plan
223
+
224
+ - [ ] Release Training & Evaluation code.
225
+ - [ ] Release ShotQA-70k dataset.
226
+ - [x] Release ShotBench test set.
227
+ - [x] Release **ShotVL** models.
228
+
229
+ ## BibTeX
230
+
231
+ ```
232
+ @misc{
233
+ liu2025shotbench,
234
+ title={ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models},
235
+ author={Hongbo Liu and Jingwen He and Yi Jin and Dian Zheng and Yuhao Dong and Fan Zhang and Ziqi Huang and Yinan He and Yangguang Li and Weichao Chen and Yu Qiao and Wanli Ouyang and Shengjie Zhao and Ziwei Liu},
236
+ year={2025},
237
+ eprint={2506.21356},
238
+ achivePrefix={arXiv},
239
+ primaryClass={cs.CV},
240
+ url={https://arxiv.org/abs/2506.21356},
241
+ }
242
  ```