Xenova HF Staff commited on
Commit
6d9f62b
·
verified ·
1 Parent(s): f488938

Update to Transformers.js v3.4

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -6,14 +6,14 @@ library_name: transformers.js
6
  https://huggingface.co/google/siglip-large-patch16-384 with ONNX weights to be compatible with Transformers.js.
7
  ## Usage (Transformers.js)
8
 
9
- If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
10
  ```bash
11
- npm i @xenova/transformers
12
  ```
13
 
14
  **Example:** Zero-shot image classification w/ `Xenova/siglip-large-patch16-384`:
15
  ```js
16
- import { pipeline } from '@xenova/transformers';
17
 
18
  const classifier = await pipeline('zero-shot-image-classification', 'Xenova/siglip-large-patch16-384');
19
  const url = 'http://images.cocodataset.org/val2017/000000039769.jpg';
@@ -30,7 +30,7 @@ console.log(output);
30
  **Example:** Compute text embeddings with `SiglipTextModel`.
31
 
32
  ```javascript
33
- import { AutoTokenizer, SiglipTextModel } from '@xenova/transformers';
34
 
35
  // Load tokenizer and text model
36
  const tokenizer = await AutoTokenizer.from_pretrained('Xenova/siglip-large-patch16-384');
@@ -53,7 +53,7 @@ const { pooler_output } = await text_model(text_inputs);
53
  **Example:** Compute vision embeddings with `SiglipVisionModel`.
54
 
55
  ```javascript
56
- import { AutoProcessor, SiglipVisionModel, RawImage} from '@xenova/transformers';
57
 
58
  // Load processor and vision model
59
  const processor = await AutoProcessor.from_pretrained('Xenova/siglip-large-patch16-384');
 
6
  https://huggingface.co/google/siglip-large-patch16-384 with ONNX weights to be compatible with Transformers.js.
7
  ## Usage (Transformers.js)
8
 
9
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
10
  ```bash
11
+ npm i @huggingface/transformers
12
  ```
13
 
14
  **Example:** Zero-shot image classification w/ `Xenova/siglip-large-patch16-384`:
15
  ```js
16
+ import { pipeline } from '@huggingface/transformers';
17
 
18
  const classifier = await pipeline('zero-shot-image-classification', 'Xenova/siglip-large-patch16-384');
19
  const url = 'http://images.cocodataset.org/val2017/000000039769.jpg';
 
30
  **Example:** Compute text embeddings with `SiglipTextModel`.
31
 
32
  ```javascript
33
+ import { AutoTokenizer, SiglipTextModel } from '@huggingface/transformers';
34
 
35
  // Load tokenizer and text model
36
  const tokenizer = await AutoTokenizer.from_pretrained('Xenova/siglip-large-patch16-384');
 
53
  **Example:** Compute vision embeddings with `SiglipVisionModel`.
54
 
55
  ```javascript
56
+ import { AutoProcessor, SiglipVisionModel, RawImage } from '@huggingface/transformers';
57
 
58
  // Load processor and vision model
59
  const processor = await AutoProcessor.from_pretrained('Xenova/siglip-large-patch16-384');