--- license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct library_name: transformers pipeline_tag: text-generation tags: - text-generation - assistant - fine-tuned - qwen2 language: - en --- # Yagna Assistant v3 Fine-tuned Qwen2.5-0.5B model trained on Yagna's professional background. ## Model Details - **Base Model**: Qwen2.5-0.5B-Instruct - **Training Method**: QLoRA with enhanced configuration - **LoRA Rank**: 32 - **Training Steps**: 250 - **Learning Rate**: 1e-4 - **Dataset Size**: 121 QA pairs ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Yagna1/yagna-assistant-v3") tokenizer = AutoTokenizer.from_pretrained("Yagna1/yagna-assistant-v3") # Ask a question prompt = "What is your educational background?" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100, temperature=0.3) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Performance Model achieves ~90% accuracy on test suite.