Training in progress, step 1100, checkpoint
Browse files- .gitattributes +1 -0
- checkpoint-1100/added_tokens.json +24 -0
- checkpoint-1100/config.json +28 -0
- checkpoint-1100/generation_config.json +9 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/latest +1 -0
- checkpoint-1100/merges.txt +0 -0
- checkpoint-1100/model-00001-of-00004.safetensors +3 -0
- checkpoint-1100/model-00002-of-00004.safetensors +3 -0
- checkpoint-1100/model-00003-of-00004.safetensors +3 -0
- checkpoint-1100/model-00004-of-00004.safetensors +3 -0
- checkpoint-1100/model.safetensors.index.json +346 -0
- checkpoint-1100/rng_state_0.pth +3 -0
- checkpoint-1100/rng_state_1.pth +3 -0
- checkpoint-1100/rng_state_2.pth +3 -0
- checkpoint-1100/rng_state_3.pth +3 -0
- checkpoint-1100/rng_state_4.pth +3 -0
- checkpoint-1100/rng_state_5.pth +3 -0
- checkpoint-1100/rng_state_6.pth +3 -0
- checkpoint-1100/rng_state_7.pth +3 -0
- checkpoint-1100/scheduler.pt +3 -0
- checkpoint-1100/special_tokens_map.json +25 -0
- checkpoint-1100/tokenizer.json +3 -0
- checkpoint-1100/tokenizer_config.json +208 -0
- checkpoint-1100/trainer_state.json +1794 -0
- checkpoint-1100/training_args.bin +3 -0
- checkpoint-1100/vocab.json +0 -0
- checkpoint-1100/zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-1100/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-1100/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 3584,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 18944,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 28,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 28,
|
| 16 |
+
"num_hidden_layers": 28,
|
| 17 |
+
"num_key_value_heads": 4,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 300000.0,
|
| 21 |
+
"sliding_window": null,
|
| 22 |
+
"tie_word_embeddings": false,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.50.0",
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 152064
|
| 28 |
+
}
|
checkpoint-1100/generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": [
|
| 4 |
+
151645,
|
| 5 |
+
151643
|
| 6 |
+
],
|
| 7 |
+
"pad_token_id": 151643,
|
| 8 |
+
"transformers_version": "4.50.0"
|
| 9 |
+
}
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6740b33d9972e271db9911eac65876a43732c6bc099b464a321678b5dbc112f4
|
| 3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e074a9277348441d640bcc1d62472d1d5b38551138ada272369fb5b1bc715abc
|
| 3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:165ae64dce3d04f5a82c31d5d7a56a85c026258bb957f2f4f5c171f1aee6c397
|
| 3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1113b75cd2c0178e77dccbe248fb55b56426db69bf44ef894e518e3fa186e5ca
|
| 3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:782481a4e0933b1ee2da7b7ea16488821963add1ddac04747b83c3a73bbae750
|
| 3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da750056dbe42e977756736edcccce27ef41a624231b655b77b7053c785b52c6
|
| 3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:349e9bbebc2edf182c2ce6ca74beb4f1518fe10cdcebdb0d73c6b40c1d58432a
|
| 3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0cf534df7c789e671e5b8ffa973d95c10eb7006d353c1f37c7af1176647d7eb5
|
| 3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2eda453b4ca24fadae3b34f97a3770eb88ca9babe3d0fc719c6d3322bdaf3d3f
|
| 3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50fa92a7a93a31af307d1672f32236d7ee7fdf5a221a6cf395aa888582db83a2
|
| 3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:12b3d92910cb25a27250c545097ec1af59bea6e43f9fac51e7c834c054d11198
|
| 3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2650b2b6261b06cf2bd094937aeb48ae5d9f341d2ada07ecf7a45ed597d83eb
|
| 3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:882296d504c589a08d22de812051d3502c7182f8fdce540b1430079339892b7c
|
| 3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e919741a2d1beed4136cb82539b6022a774e852d62ee0a86f5670aad77afe66
|
| 3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:957e31b922e57c67b9a3ac1f18f7574cbf6de0d33409f5de2b0ef9b8cf66e47d
|
| 3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6a274b2df9e3c48408967ad4e11b6df1de3913174c034ad632b4a3d50310b06
|
| 3 |
+
size 166293
|
checkpoint-1100/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1099
|
checkpoint-1100/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1100/model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed472d7a80ba716c13e1b7a69b5025e14e29ffd92d3e9c4cf00900c3da38bfaa
|
| 3 |
+
size 4877660776
|
checkpoint-1100/model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b1dbcc4e359dcbbdc8cf2fecd2e1a98fc9afa1929cd843c581899b9158e90cf
|
| 3 |
+
size 4932751008
|
checkpoint-1100/model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09d0f529c0e00b8feb8256de6add3f2bc50000ee5fc0d552b27c6e430f773606
|
| 3 |
+
size 4330865200
|
checkpoint-1100/model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63bedbf1ed7a8c34596dde5c921af707f0ad8ec6d794e8e8db014b692004bb23
|
| 3 |
+
size 1089994880
|
checkpoint-1100/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15231233024
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 345 |
+
}
|
| 346 |
+
}
|
checkpoint-1100/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
|
| 3 |
+
size 15984
|
checkpoint-1100/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
|
| 3 |
+
size 15984
|
checkpoint-1100/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
|
| 3 |
+
size 15984
|
checkpoint-1100/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
|
| 3 |
+
size 15984
|
checkpoint-1100/rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
|
| 3 |
+
size 15984
|
checkpoint-1100/rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
|
| 3 |
+
size 15984
|
checkpoint-1100/rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
|
| 3 |
+
size 15984
|
checkpoint-1100/rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
|
| 3 |
+
size 15984
|
checkpoint-1100/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b22b78b992313259665933ffb95329dafb0479c70eaba6cb51b4c7ef9e90af3b
|
| 3 |
+
size 1064
|
checkpoint-1100/special_tokens_map.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": "<|im_end|>"
|
| 25 |
+
}
|
checkpoint-1100/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
checkpoint-1100/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|im_end|>",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-1100/trainer_state.json
ADDED
|
@@ -0,0 +1,1794 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 1.024219841639497,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 1100,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.004657661853749418,
|
| 14 |
+
"grad_norm": 82.05587354646646,
|
| 15 |
+
"learning_rate": 7.763975155279503e-07,
|
| 16 |
+
"loss": 9.9438,
|
| 17 |
+
"num_tokens": 5242880.0,
|
| 18 |
+
"step": 5
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"epoch": 0.009315323707498836,
|
| 22 |
+
"grad_norm": 98.0190156931495,
|
| 23 |
+
"learning_rate": 1.5527950310559006e-06,
|
| 24 |
+
"loss": 9.6475,
|
| 25 |
+
"num_tokens": 10485760.0,
|
| 26 |
+
"step": 10
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.013972985561248253,
|
| 30 |
+
"grad_norm": 113.69325621752397,
|
| 31 |
+
"learning_rate": 2.329192546583851e-06,
|
| 32 |
+
"loss": 7.5009,
|
| 33 |
+
"num_tokens": 15691438.0,
|
| 34 |
+
"step": 15
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"epoch": 0.018630647414997672,
|
| 38 |
+
"grad_norm": 20.08992771959664,
|
| 39 |
+
"learning_rate": 3.1055900621118013e-06,
|
| 40 |
+
"loss": 2.3962,
|
| 41 |
+
"num_tokens": 20915252.0,
|
| 42 |
+
"step": 20
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"epoch": 0.02328830926874709,
|
| 46 |
+
"grad_norm": 3.796391559366892,
|
| 47 |
+
"learning_rate": 3.881987577639752e-06,
|
| 48 |
+
"loss": 1.3249,
|
| 49 |
+
"num_tokens": 26134828.0,
|
| 50 |
+
"step": 25
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.027945971122496506,
|
| 54 |
+
"grad_norm": 1.897340748140379,
|
| 55 |
+
"learning_rate": 4.658385093167702e-06,
|
| 56 |
+
"loss": 1.063,
|
| 57 |
+
"num_tokens": 31377708.0,
|
| 58 |
+
"step": 30
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.032603632976245925,
|
| 62 |
+
"grad_norm": 0.9353460581126074,
|
| 63 |
+
"learning_rate": 5.4347826086956525e-06,
|
| 64 |
+
"loss": 0.891,
|
| 65 |
+
"num_tokens": 36557688.0,
|
| 66 |
+
"step": 35
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.037261294829995344,
|
| 70 |
+
"grad_norm": 0.6860451736359767,
|
| 71 |
+
"learning_rate": 6.2111801242236025e-06,
|
| 72 |
+
"loss": 0.8014,
|
| 73 |
+
"num_tokens": 41800322.0,
|
| 74 |
+
"step": 40
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.04191895668374476,
|
| 78 |
+
"grad_norm": 0.4462391543288957,
|
| 79 |
+
"learning_rate": 6.9875776397515525e-06,
|
| 80 |
+
"loss": 0.702,
|
| 81 |
+
"num_tokens": 47043202.0,
|
| 82 |
+
"step": 45
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"epoch": 0.04657661853749418,
|
| 86 |
+
"grad_norm": 0.5658389980406826,
|
| 87 |
+
"learning_rate": 7.763975155279503e-06,
|
| 88 |
+
"loss": 0.679,
|
| 89 |
+
"num_tokens": 52286082.0,
|
| 90 |
+
"step": 50
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"epoch": 0.05123428039124359,
|
| 94 |
+
"grad_norm": 0.39716601221628856,
|
| 95 |
+
"learning_rate": 8.540372670807453e-06,
|
| 96 |
+
"loss": 0.6432,
|
| 97 |
+
"num_tokens": 57528962.0,
|
| 98 |
+
"step": 55
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0.05589194224499301,
|
| 102 |
+
"grad_norm": 0.3576561966497444,
|
| 103 |
+
"learning_rate": 9.316770186335403e-06,
|
| 104 |
+
"loss": 0.6268,
|
| 105 |
+
"num_tokens": 62771842.0,
|
| 106 |
+
"step": 60
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"epoch": 0.06054960409874243,
|
| 110 |
+
"grad_norm": 0.3690305804361313,
|
| 111 |
+
"learning_rate": 1.0093167701863353e-05,
|
| 112 |
+
"loss": 0.6062,
|
| 113 |
+
"num_tokens": 67980354.0,
|
| 114 |
+
"step": 65
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.06520726595249185,
|
| 118 |
+
"grad_norm": 0.30904022597752495,
|
| 119 |
+
"learning_rate": 1.0869565217391305e-05,
|
| 120 |
+
"loss": 0.5755,
|
| 121 |
+
"num_tokens": 73223234.0,
|
| 122 |
+
"step": 70
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.06986492780624126,
|
| 126 |
+
"grad_norm": 0.33381487552443856,
|
| 127 |
+
"learning_rate": 1.1645962732919255e-05,
|
| 128 |
+
"loss": 0.5722,
|
| 129 |
+
"num_tokens": 78437814.0,
|
| 130 |
+
"step": 75
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.07452258965999069,
|
| 134 |
+
"grad_norm": 0.29018900181654517,
|
| 135 |
+
"learning_rate": 1.2422360248447205e-05,
|
| 136 |
+
"loss": 0.5787,
|
| 137 |
+
"num_tokens": 83680694.0,
|
| 138 |
+
"step": 80
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"epoch": 0.0791802515137401,
|
| 142 |
+
"grad_norm": 0.31193541739320246,
|
| 143 |
+
"learning_rate": 1.3198757763975155e-05,
|
| 144 |
+
"loss": 0.5484,
|
| 145 |
+
"num_tokens": 88923574.0,
|
| 146 |
+
"step": 85
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 0.08383791336748952,
|
| 150 |
+
"grad_norm": 0.36013559560524766,
|
| 151 |
+
"learning_rate": 1.3975155279503105e-05,
|
| 152 |
+
"loss": 0.551,
|
| 153 |
+
"num_tokens": 94166454.0,
|
| 154 |
+
"step": 90
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"epoch": 0.08849557522123894,
|
| 158 |
+
"grad_norm": 0.29887540089263853,
|
| 159 |
+
"learning_rate": 1.4751552795031057e-05,
|
| 160 |
+
"loss": 0.5556,
|
| 161 |
+
"num_tokens": 99409334.0,
|
| 162 |
+
"step": 95
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"epoch": 0.09315323707498836,
|
| 166 |
+
"grad_norm": 0.31777202176514885,
|
| 167 |
+
"learning_rate": 1.5527950310559007e-05,
|
| 168 |
+
"loss": 0.5419,
|
| 169 |
+
"num_tokens": 104652214.0,
|
| 170 |
+
"step": 100
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.09781089892873777,
|
| 174 |
+
"grad_norm": 0.3039817792088042,
|
| 175 |
+
"learning_rate": 1.630434782608696e-05,
|
| 176 |
+
"loss": 0.5397,
|
| 177 |
+
"num_tokens": 109895094.0,
|
| 178 |
+
"step": 105
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.10246856078248719,
|
| 182 |
+
"grad_norm": 0.3024257620617263,
|
| 183 |
+
"learning_rate": 1.7080745341614907e-05,
|
| 184 |
+
"loss": 0.5252,
|
| 185 |
+
"num_tokens": 115137974.0,
|
| 186 |
+
"step": 110
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"epoch": 0.10712622263623661,
|
| 190 |
+
"grad_norm": 0.31140997132030224,
|
| 191 |
+
"learning_rate": 1.785714285714286e-05,
|
| 192 |
+
"loss": 0.5238,
|
| 193 |
+
"num_tokens": 120380854.0,
|
| 194 |
+
"step": 115
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 0.11178388448998602,
|
| 198 |
+
"grad_norm": 0.35218239712763794,
|
| 199 |
+
"learning_rate": 1.8633540372670807e-05,
|
| 200 |
+
"loss": 0.5345,
|
| 201 |
+
"num_tokens": 125623734.0,
|
| 202 |
+
"step": 120
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"epoch": 0.11644154634373545,
|
| 206 |
+
"grad_norm": 0.34642949453466215,
|
| 207 |
+
"learning_rate": 1.940993788819876e-05,
|
| 208 |
+
"loss": 0.5095,
|
| 209 |
+
"num_tokens": 130866614.0,
|
| 210 |
+
"step": 125
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"epoch": 0.12109920819748486,
|
| 214 |
+
"grad_norm": 0.3148152432452141,
|
| 215 |
+
"learning_rate": 2.0186335403726707e-05,
|
| 216 |
+
"loss": 0.5097,
|
| 217 |
+
"num_tokens": 136068456.0,
|
| 218 |
+
"step": 130
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 0.1257568700512343,
|
| 222 |
+
"grad_norm": 0.3218897464063567,
|
| 223 |
+
"learning_rate": 2.096273291925466e-05,
|
| 224 |
+
"loss": 0.5178,
|
| 225 |
+
"num_tokens": 141311336.0,
|
| 226 |
+
"step": 135
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.1304145319049837,
|
| 230 |
+
"grad_norm": 0.30116924097164377,
|
| 231 |
+
"learning_rate": 2.173913043478261e-05,
|
| 232 |
+
"loss": 0.5075,
|
| 233 |
+
"num_tokens": 146554216.0,
|
| 234 |
+
"step": 140
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.1350721937587331,
|
| 238 |
+
"grad_norm": 0.3941017670817498,
|
| 239 |
+
"learning_rate": 2.2515527950310562e-05,
|
| 240 |
+
"loss": 0.5181,
|
| 241 |
+
"num_tokens": 151797096.0,
|
| 242 |
+
"step": 145
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 0.13972985561248252,
|
| 246 |
+
"grad_norm": 0.38992413690107575,
|
| 247 |
+
"learning_rate": 2.329192546583851e-05,
|
| 248 |
+
"loss": 0.5091,
|
| 249 |
+
"num_tokens": 157039976.0,
|
| 250 |
+
"step": 150
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"epoch": 0.14438751746623196,
|
| 254 |
+
"grad_norm": 0.3299485605544544,
|
| 255 |
+
"learning_rate": 2.4068322981366462e-05,
|
| 256 |
+
"loss": 0.4893,
|
| 257 |
+
"num_tokens": 162282856.0,
|
| 258 |
+
"step": 155
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"epoch": 0.14904517931998137,
|
| 262 |
+
"grad_norm": 0.398285302815728,
|
| 263 |
+
"learning_rate": 2.484472049689441e-05,
|
| 264 |
+
"loss": 0.498,
|
| 265 |
+
"num_tokens": 167466294.0,
|
| 266 |
+
"step": 160
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.1537028411737308,
|
| 270 |
+
"grad_norm": 0.464751877974553,
|
| 271 |
+
"learning_rate": 2.5621118012422362e-05,
|
| 272 |
+
"loss": 0.4952,
|
| 273 |
+
"num_tokens": 172703130.0,
|
| 274 |
+
"step": 165
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"epoch": 0.1583605030274802,
|
| 278 |
+
"grad_norm": 0.5494333844825245,
|
| 279 |
+
"learning_rate": 2.639751552795031e-05,
|
| 280 |
+
"loss": 0.4927,
|
| 281 |
+
"num_tokens": 177946010.0,
|
| 282 |
+
"step": 170
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.1630181648812296,
|
| 286 |
+
"grad_norm": 0.4673335432920727,
|
| 287 |
+
"learning_rate": 2.7173913043478262e-05,
|
| 288 |
+
"loss": 0.5052,
|
| 289 |
+
"num_tokens": 183145930.0,
|
| 290 |
+
"step": 175
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.16767582673497905,
|
| 294 |
+
"grad_norm": 0.40861619513411185,
|
| 295 |
+
"learning_rate": 2.795031055900621e-05,
|
| 296 |
+
"loss": 0.4964,
|
| 297 |
+
"num_tokens": 188388810.0,
|
| 298 |
+
"step": 180
|
| 299 |
+
},
|
| 300 |
+
{
|
| 301 |
+
"epoch": 0.17233348858872846,
|
| 302 |
+
"grad_norm": 0.4257074069728051,
|
| 303 |
+
"learning_rate": 2.8726708074534165e-05,
|
| 304 |
+
"loss": 0.4966,
|
| 305 |
+
"num_tokens": 193628148.0,
|
| 306 |
+
"step": 185
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"epoch": 0.17699115044247787,
|
| 310 |
+
"grad_norm": 0.38423446067890304,
|
| 311 |
+
"learning_rate": 2.9503105590062114e-05,
|
| 312 |
+
"loss": 0.4874,
|
| 313 |
+
"num_tokens": 198871028.0,
|
| 314 |
+
"step": 190
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 0.18164881229622729,
|
| 318 |
+
"grad_norm": 0.5665394970476383,
|
| 319 |
+
"learning_rate": 3.0279503105590062e-05,
|
| 320 |
+
"loss": 0.4931,
|
| 321 |
+
"num_tokens": 204113908.0,
|
| 322 |
+
"step": 195
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"epoch": 0.18630647414997673,
|
| 326 |
+
"grad_norm": 0.4873250722559478,
|
| 327 |
+
"learning_rate": 3.1055900621118014e-05,
|
| 328 |
+
"loss": 0.4632,
|
| 329 |
+
"num_tokens": 209266418.0,
|
| 330 |
+
"step": 200
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"epoch": 0.19096413600372614,
|
| 334 |
+
"grad_norm": 0.5150102284421441,
|
| 335 |
+
"learning_rate": 3.183229813664597e-05,
|
| 336 |
+
"loss": 0.4857,
|
| 337 |
+
"num_tokens": 214355738.0,
|
| 338 |
+
"step": 205
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.19562179785747555,
|
| 342 |
+
"grad_norm": 0.4984697478657664,
|
| 343 |
+
"learning_rate": 3.260869565217392e-05,
|
| 344 |
+
"loss": 0.4728,
|
| 345 |
+
"num_tokens": 219598618.0,
|
| 346 |
+
"step": 210
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.20027945971122496,
|
| 350 |
+
"grad_norm": 0.6451003628441052,
|
| 351 |
+
"learning_rate": 3.3385093167701865e-05,
|
| 352 |
+
"loss": 0.4856,
|
| 353 |
+
"num_tokens": 224779924.0,
|
| 354 |
+
"step": 215
|
| 355 |
+
},
|
| 356 |
+
{
|
| 357 |
+
"epoch": 0.20493712156497437,
|
| 358 |
+
"grad_norm": 0.6652150575437156,
|
| 359 |
+
"learning_rate": 3.4161490683229814e-05,
|
| 360 |
+
"loss": 0.4823,
|
| 361 |
+
"num_tokens": 230001220.0,
|
| 362 |
+
"step": 220
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 0.2095947834187238,
|
| 366 |
+
"grad_norm": 0.49487018926010595,
|
| 367 |
+
"learning_rate": 3.493788819875777e-05,
|
| 368 |
+
"loss": 0.4828,
|
| 369 |
+
"num_tokens": 235244100.0,
|
| 370 |
+
"step": 225
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"epoch": 0.21425244527247322,
|
| 374 |
+
"grad_norm": 0.5752941558981775,
|
| 375 |
+
"learning_rate": 3.571428571428572e-05,
|
| 376 |
+
"loss": 0.4814,
|
| 377 |
+
"num_tokens": 240459436.0,
|
| 378 |
+
"step": 230
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"epoch": 0.21891010712622264,
|
| 382 |
+
"grad_norm": 0.4619284425777841,
|
| 383 |
+
"learning_rate": 3.6490683229813665e-05,
|
| 384 |
+
"loss": 0.4743,
|
| 385 |
+
"num_tokens": 245702316.0,
|
| 386 |
+
"step": 235
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"epoch": 0.22356776897997205,
|
| 390 |
+
"grad_norm": 0.7391653942740258,
|
| 391 |
+
"learning_rate": 3.7267080745341614e-05,
|
| 392 |
+
"loss": 0.474,
|
| 393 |
+
"num_tokens": 250945196.0,
|
| 394 |
+
"step": 240
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.22822543083372146,
|
| 398 |
+
"grad_norm": 0.6338388924664621,
|
| 399 |
+
"learning_rate": 3.804347826086957e-05,
|
| 400 |
+
"loss": 0.4614,
|
| 401 |
+
"num_tokens": 256130440.0,
|
| 402 |
+
"step": 245
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.2328830926874709,
|
| 406 |
+
"grad_norm": 0.4960164973911761,
|
| 407 |
+
"learning_rate": 3.881987577639752e-05,
|
| 408 |
+
"loss": 0.4577,
|
| 409 |
+
"num_tokens": 261373320.0,
|
| 410 |
+
"step": 250
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"epoch": 0.2375407545412203,
|
| 414 |
+
"grad_norm": 0.3662549013001617,
|
| 415 |
+
"learning_rate": 3.9596273291925465e-05,
|
| 416 |
+
"loss": 0.4701,
|
| 417 |
+
"num_tokens": 266595056.0,
|
| 418 |
+
"step": 255
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 0.24219841639496972,
|
| 422 |
+
"grad_norm": 0.40055322139053984,
|
| 423 |
+
"learning_rate": 4.0372670807453414e-05,
|
| 424 |
+
"loss": 0.4749,
|
| 425 |
+
"num_tokens": 271837936.0,
|
| 426 |
+
"step": 260
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"epoch": 0.24685607824871914,
|
| 430 |
+
"grad_norm": 0.5265912543642953,
|
| 431 |
+
"learning_rate": 4.114906832298137e-05,
|
| 432 |
+
"loss": 0.4682,
|
| 433 |
+
"num_tokens": 277080816.0,
|
| 434 |
+
"step": 265
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 0.2515137401024686,
|
| 438 |
+
"grad_norm": 0.516959496135824,
|
| 439 |
+
"learning_rate": 4.192546583850932e-05,
|
| 440 |
+
"loss": 0.4563,
|
| 441 |
+
"num_tokens": 282323696.0,
|
| 442 |
+
"step": 270
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"epoch": 0.25617140195621796,
|
| 446 |
+
"grad_norm": 0.42466326053184844,
|
| 447 |
+
"learning_rate": 4.270186335403727e-05,
|
| 448 |
+
"loss": 0.4725,
|
| 449 |
+
"num_tokens": 287548638.0,
|
| 450 |
+
"step": 275
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.2608290638099674,
|
| 454 |
+
"grad_norm": 0.6461617346625652,
|
| 455 |
+
"learning_rate": 4.347826086956522e-05,
|
| 456 |
+
"loss": 0.4614,
|
| 457 |
+
"num_tokens": 292791518.0,
|
| 458 |
+
"step": 280
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.26548672566371684,
|
| 462 |
+
"grad_norm": 0.5162643395814067,
|
| 463 |
+
"learning_rate": 4.425465838509317e-05,
|
| 464 |
+
"loss": 0.4583,
|
| 465 |
+
"num_tokens": 298034398.0,
|
| 466 |
+
"step": 285
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"epoch": 0.2701443875174662,
|
| 470 |
+
"grad_norm": 0.4606739995726742,
|
| 471 |
+
"learning_rate": 4.5031055900621124e-05,
|
| 472 |
+
"loss": 0.4564,
|
| 473 |
+
"num_tokens": 303277278.0,
|
| 474 |
+
"step": 290
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"epoch": 0.27480204937121566,
|
| 478 |
+
"grad_norm": 0.5165208655712867,
|
| 479 |
+
"learning_rate": 4.580745341614907e-05,
|
| 480 |
+
"loss": 0.4502,
|
| 481 |
+
"num_tokens": 308520158.0,
|
| 482 |
+
"step": 295
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 0.27945971122496505,
|
| 486 |
+
"grad_norm": 0.3993911836573598,
|
| 487 |
+
"learning_rate": 4.658385093167702e-05,
|
| 488 |
+
"loss": 0.4634,
|
| 489 |
+
"num_tokens": 313763038.0,
|
| 490 |
+
"step": 300
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 0.2841173730787145,
|
| 494 |
+
"grad_norm": 0.6185284048775294,
|
| 495 |
+
"learning_rate": 4.736024844720497e-05,
|
| 496 |
+
"loss": 0.4678,
|
| 497 |
+
"num_tokens": 318941236.0,
|
| 498 |
+
"step": 305
|
| 499 |
+
},
|
| 500 |
+
{
|
| 501 |
+
"epoch": 0.2887750349324639,
|
| 502 |
+
"grad_norm": 0.6607767188478789,
|
| 503 |
+
"learning_rate": 4.8136645962732924e-05,
|
| 504 |
+
"loss": 0.4634,
|
| 505 |
+
"num_tokens": 324184116.0,
|
| 506 |
+
"step": 310
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.2934326967862133,
|
| 510 |
+
"grad_norm": 0.6792865629186282,
|
| 511 |
+
"learning_rate": 4.891304347826087e-05,
|
| 512 |
+
"loss": 0.4531,
|
| 513 |
+
"num_tokens": 329426996.0,
|
| 514 |
+
"step": 315
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.29809035863996275,
|
| 518 |
+
"grad_norm": 0.5370350636249767,
|
| 519 |
+
"learning_rate": 4.968944099378882e-05,
|
| 520 |
+
"loss": 0.4604,
|
| 521 |
+
"num_tokens": 334669876.0,
|
| 522 |
+
"step": 320
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"epoch": 0.30274802049371213,
|
| 526 |
+
"grad_norm": 0.5243165861771709,
|
| 527 |
+
"learning_rate": 4.994822229892993e-05,
|
| 528 |
+
"loss": 0.4626,
|
| 529 |
+
"num_tokens": 339912756.0,
|
| 530 |
+
"step": 325
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 0.3074056823474616,
|
| 534 |
+
"grad_norm": 0.6658402668928456,
|
| 535 |
+
"learning_rate": 4.986192613047981e-05,
|
| 536 |
+
"loss": 0.4615,
|
| 537 |
+
"num_tokens": 345155636.0,
|
| 538 |
+
"step": 330
|
| 539 |
+
},
|
| 540 |
+
{
|
| 541 |
+
"epoch": 0.312063344201211,
|
| 542 |
+
"grad_norm": 0.4658973380194966,
|
| 543 |
+
"learning_rate": 4.977562996202969e-05,
|
| 544 |
+
"loss": 0.4444,
|
| 545 |
+
"num_tokens": 350398516.0,
|
| 546 |
+
"step": 335
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"epoch": 0.3167210060549604,
|
| 550 |
+
"grad_norm": 0.513098874415573,
|
| 551 |
+
"learning_rate": 4.968933379357957e-05,
|
| 552 |
+
"loss": 0.4583,
|
| 553 |
+
"num_tokens": 355641396.0,
|
| 554 |
+
"step": 340
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"epoch": 0.32137866790870984,
|
| 558 |
+
"grad_norm": 0.43639797114828116,
|
| 559 |
+
"learning_rate": 4.9603037625129445e-05,
|
| 560 |
+
"loss": 0.4462,
|
| 561 |
+
"num_tokens": 360884276.0,
|
| 562 |
+
"step": 345
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.3260363297624592,
|
| 566 |
+
"grad_norm": 0.41532792848046246,
|
| 567 |
+
"learning_rate": 4.951674145667933e-05,
|
| 568 |
+
"loss": 0.4483,
|
| 569 |
+
"num_tokens": 366127156.0,
|
| 570 |
+
"step": 350
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.33069399161620866,
|
| 574 |
+
"grad_norm": 0.4148646031554546,
|
| 575 |
+
"learning_rate": 4.94304452882292e-05,
|
| 576 |
+
"loss": 0.4452,
|
| 577 |
+
"num_tokens": 371370036.0,
|
| 578 |
+
"step": 355
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 0.3353516534699581,
|
| 582 |
+
"grad_norm": 0.5641848552142894,
|
| 583 |
+
"learning_rate": 4.934414911977908e-05,
|
| 584 |
+
"loss": 0.4553,
|
| 585 |
+
"num_tokens": 376600048.0,
|
| 586 |
+
"step": 360
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"epoch": 0.3400093153237075,
|
| 590 |
+
"grad_norm": 0.37381304489035017,
|
| 591 |
+
"learning_rate": 4.9257852951328965e-05,
|
| 592 |
+
"loss": 0.4527,
|
| 593 |
+
"num_tokens": 381842928.0,
|
| 594 |
+
"step": 365
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"epoch": 0.3446669771774569,
|
| 598 |
+
"grad_norm": 0.4749170963347877,
|
| 599 |
+
"learning_rate": 4.917155678287884e-05,
|
| 600 |
+
"loss": 0.4663,
|
| 601 |
+
"num_tokens": 387073976.0,
|
| 602 |
+
"step": 370
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 0.3493246390312063,
|
| 606 |
+
"grad_norm": 0.5043241941069802,
|
| 607 |
+
"learning_rate": 4.908526061442872e-05,
|
| 608 |
+
"loss": 0.4579,
|
| 609 |
+
"num_tokens": 392316856.0,
|
| 610 |
+
"step": 375
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"epoch": 0.35398230088495575,
|
| 614 |
+
"grad_norm": 0.39517110563197555,
|
| 615 |
+
"learning_rate": 4.89989644459786e-05,
|
| 616 |
+
"loss": 0.4446,
|
| 617 |
+
"num_tokens": 397559736.0,
|
| 618 |
+
"step": 380
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.3586399627387052,
|
| 622 |
+
"grad_norm": 0.37708532711839055,
|
| 623 |
+
"learning_rate": 4.891266827752848e-05,
|
| 624 |
+
"loss": 0.4391,
|
| 625 |
+
"num_tokens": 402802616.0,
|
| 626 |
+
"step": 385
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.36329762459245457,
|
| 630 |
+
"grad_norm": 0.4975840523986466,
|
| 631 |
+
"learning_rate": 4.882637210907836e-05,
|
| 632 |
+
"loss": 0.4425,
|
| 633 |
+
"num_tokens": 408014414.0,
|
| 634 |
+
"step": 390
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 0.367955286446204,
|
| 638 |
+
"grad_norm": 0.5319257453602194,
|
| 639 |
+
"learning_rate": 4.874007594062824e-05,
|
| 640 |
+
"loss": 0.4379,
|
| 641 |
+
"num_tokens": 413257294.0,
|
| 642 |
+
"step": 395
|
| 643 |
+
},
|
| 644 |
+
{
|
| 645 |
+
"epoch": 0.37261294829995345,
|
| 646 |
+
"grad_norm": 0.4531992500866268,
|
| 647 |
+
"learning_rate": 4.865377977217811e-05,
|
| 648 |
+
"loss": 0.4369,
|
| 649 |
+
"num_tokens": 418500174.0,
|
| 650 |
+
"step": 400
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"epoch": 0.37727061015370283,
|
| 654 |
+
"grad_norm": 0.4918946640070345,
|
| 655 |
+
"learning_rate": 4.8567483603728e-05,
|
| 656 |
+
"loss": 0.437,
|
| 657 |
+
"num_tokens": 423692782.0,
|
| 658 |
+
"step": 405
|
| 659 |
+
},
|
| 660 |
+
{
|
| 661 |
+
"epoch": 0.3819282720074523,
|
| 662 |
+
"grad_norm": 0.4204196435564102,
|
| 663 |
+
"learning_rate": 4.8481187435277875e-05,
|
| 664 |
+
"loss": 0.4439,
|
| 665 |
+
"num_tokens": 428845062.0,
|
| 666 |
+
"step": 410
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"epoch": 0.38658593386120166,
|
| 670 |
+
"grad_norm": 0.48787071943190957,
|
| 671 |
+
"learning_rate": 4.839489126682776e-05,
|
| 672 |
+
"loss": 0.4426,
|
| 673 |
+
"num_tokens": 434087942.0,
|
| 674 |
+
"step": 415
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.3912435957149511,
|
| 678 |
+
"grad_norm": 0.4530000025912301,
|
| 679 |
+
"learning_rate": 4.830859509837763e-05,
|
| 680 |
+
"loss": 0.4337,
|
| 681 |
+
"num_tokens": 439278078.0,
|
| 682 |
+
"step": 420
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.39590125756870054,
|
| 686 |
+
"grad_norm": 0.4001439902959063,
|
| 687 |
+
"learning_rate": 4.822229892992751e-05,
|
| 688 |
+
"loss": 0.4501,
|
| 689 |
+
"num_tokens": 444520958.0,
|
| 690 |
+
"step": 425
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 0.4005589194224499,
|
| 694 |
+
"grad_norm": 0.5763435863000469,
|
| 695 |
+
"learning_rate": 4.8136002761477395e-05,
|
| 696 |
+
"loss": 0.4424,
|
| 697 |
+
"num_tokens": 449763838.0,
|
| 698 |
+
"step": 430
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"epoch": 0.40521658127619936,
|
| 702 |
+
"grad_norm": 0.41267081555819357,
|
| 703 |
+
"learning_rate": 4.804970659302727e-05,
|
| 704 |
+
"loss": 0.4465,
|
| 705 |
+
"num_tokens": 454963270.0,
|
| 706 |
+
"step": 435
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"epoch": 0.40987424312994875,
|
| 710 |
+
"grad_norm": 0.5198402187503036,
|
| 711 |
+
"learning_rate": 4.796341042457715e-05,
|
| 712 |
+
"loss": 0.4562,
|
| 713 |
+
"num_tokens": 460206150.0,
|
| 714 |
+
"step": 440
|
| 715 |
+
},
|
| 716 |
+
{
|
| 717 |
+
"epoch": 0.4145319049836982,
|
| 718 |
+
"grad_norm": 0.4804770546328782,
|
| 719 |
+
"learning_rate": 4.787711425612703e-05,
|
| 720 |
+
"loss": 0.4316,
|
| 721 |
+
"num_tokens": 465378662.0,
|
| 722 |
+
"step": 445
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"epoch": 0.4191895668374476,
|
| 726 |
+
"grad_norm": 0.3573229568827099,
|
| 727 |
+
"learning_rate": 4.779081808767691e-05,
|
| 728 |
+
"loss": 0.4348,
|
| 729 |
+
"num_tokens": 470602566.0,
|
| 730 |
+
"step": 450
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.423847228691197,
|
| 734 |
+
"grad_norm": 0.48298666415576386,
|
| 735 |
+
"learning_rate": 4.770452191922679e-05,
|
| 736 |
+
"loss": 0.4567,
|
| 737 |
+
"num_tokens": 475800020.0,
|
| 738 |
+
"step": 455
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.42850489054494645,
|
| 742 |
+
"grad_norm": 0.4293786343270861,
|
| 743 |
+
"learning_rate": 4.761822575077667e-05,
|
| 744 |
+
"loss": 0.4356,
|
| 745 |
+
"num_tokens": 481042900.0,
|
| 746 |
+
"step": 460
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 0.43316255239869583,
|
| 750 |
+
"grad_norm": 0.40640797330880013,
|
| 751 |
+
"learning_rate": 4.753192958232654e-05,
|
| 752 |
+
"loss": 0.4451,
|
| 753 |
+
"num_tokens": 486220500.0,
|
| 754 |
+
"step": 465
|
| 755 |
+
},
|
| 756 |
+
{
|
| 757 |
+
"epoch": 0.43782021425244527,
|
| 758 |
+
"grad_norm": 0.3620709663973599,
|
| 759 |
+
"learning_rate": 4.744563341387643e-05,
|
| 760 |
+
"loss": 0.4366,
|
| 761 |
+
"num_tokens": 491463380.0,
|
| 762 |
+
"step": 470
|
| 763 |
+
},
|
| 764 |
+
{
|
| 765 |
+
"epoch": 0.4424778761061947,
|
| 766 |
+
"grad_norm": 0.3689460832182135,
|
| 767 |
+
"learning_rate": 4.7359337245426306e-05,
|
| 768 |
+
"loss": 0.4454,
|
| 769 |
+
"num_tokens": 496706260.0,
|
| 770 |
+
"step": 475
|
| 771 |
+
},
|
| 772 |
+
{
|
| 773 |
+
"epoch": 0.4471355379599441,
|
| 774 |
+
"grad_norm": 0.3235598346166627,
|
| 775 |
+
"learning_rate": 4.7273041076976184e-05,
|
| 776 |
+
"loss": 0.4297,
|
| 777 |
+
"num_tokens": 501949140.0,
|
| 778 |
+
"step": 480
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"epoch": 0.45179319981369354,
|
| 782 |
+
"grad_norm": 0.3539771478611738,
|
| 783 |
+
"learning_rate": 4.718674490852606e-05,
|
| 784 |
+
"loss": 0.433,
|
| 785 |
+
"num_tokens": 507192020.0,
|
| 786 |
+
"step": 485
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.4564508616674429,
|
| 790 |
+
"grad_norm": 0.3776299787194787,
|
| 791 |
+
"learning_rate": 4.710044874007594e-05,
|
| 792 |
+
"loss": 0.4365,
|
| 793 |
+
"num_tokens": 512433054.0,
|
| 794 |
+
"step": 490
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.46110852352119236,
|
| 798 |
+
"grad_norm": 0.36237963146891655,
|
| 799 |
+
"learning_rate": 4.7014152571625826e-05,
|
| 800 |
+
"loss": 0.4273,
|
| 801 |
+
"num_tokens": 517658160.0,
|
| 802 |
+
"step": 495
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 0.4657661853749418,
|
| 806 |
+
"grad_norm": 0.4084396998076576,
|
| 807 |
+
"learning_rate": 4.6927856403175704e-05,
|
| 808 |
+
"loss": 0.4358,
|
| 809 |
+
"num_tokens": 522901040.0,
|
| 810 |
+
"step": 500
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"epoch": 0.4704238472286912,
|
| 814 |
+
"grad_norm": 0.32563088148769737,
|
| 815 |
+
"learning_rate": 4.684156023472558e-05,
|
| 816 |
+
"loss": 0.4293,
|
| 817 |
+
"num_tokens": 528127586.0,
|
| 818 |
+
"step": 505
|
| 819 |
+
},
|
| 820 |
+
{
|
| 821 |
+
"epoch": 0.4750815090824406,
|
| 822 |
+
"grad_norm": 0.46748215510130064,
|
| 823 |
+
"learning_rate": 4.675526406627546e-05,
|
| 824 |
+
"loss": 0.4253,
|
| 825 |
+
"num_tokens": 533355284.0,
|
| 826 |
+
"step": 510
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"epoch": 0.47973917093619,
|
| 830 |
+
"grad_norm": 0.5058103175826015,
|
| 831 |
+
"learning_rate": 4.666896789782534e-05,
|
| 832 |
+
"loss": 0.4382,
|
| 833 |
+
"num_tokens": 538598164.0,
|
| 834 |
+
"step": 515
|
| 835 |
+
},
|
| 836 |
+
{
|
| 837 |
+
"epoch": 0.48439683278993945,
|
| 838 |
+
"grad_norm": 0.48239977250625826,
|
| 839 |
+
"learning_rate": 4.658267172937522e-05,
|
| 840 |
+
"loss": 0.4342,
|
| 841 |
+
"num_tokens": 543841044.0,
|
| 842 |
+
"step": 520
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.4890544946436889,
|
| 846 |
+
"grad_norm": 0.6331188841101223,
|
| 847 |
+
"learning_rate": 4.64963755609251e-05,
|
| 848 |
+
"loss": 0.4418,
|
| 849 |
+
"num_tokens": 549083924.0,
|
| 850 |
+
"step": 525
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.49371215649743827,
|
| 854 |
+
"grad_norm": 0.48500000646310354,
|
| 855 |
+
"learning_rate": 4.641007939247497e-05,
|
| 856 |
+
"loss": 0.4277,
|
| 857 |
+
"num_tokens": 554323932.0,
|
| 858 |
+
"step": 530
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 0.4983698183511877,
|
| 862 |
+
"grad_norm": 0.6606771561537853,
|
| 863 |
+
"learning_rate": 4.632378322402486e-05,
|
| 864 |
+
"loss": 0.4367,
|
| 865 |
+
"num_tokens": 559555680.0,
|
| 866 |
+
"step": 535
|
| 867 |
+
},
|
| 868 |
+
{
|
| 869 |
+
"epoch": 0.5030274802049371,
|
| 870 |
+
"grad_norm": 0.47177575989233334,
|
| 871 |
+
"learning_rate": 4.6237487055574736e-05,
|
| 872 |
+
"loss": 0.4395,
|
| 873 |
+
"num_tokens": 564798560.0,
|
| 874 |
+
"step": 540
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"epoch": 0.5076851420586865,
|
| 878 |
+
"grad_norm": 0.35505752604264607,
|
| 879 |
+
"learning_rate": 4.6151190887124615e-05,
|
| 880 |
+
"loss": 0.4273,
|
| 881 |
+
"num_tokens": 569918486.0,
|
| 882 |
+
"step": 545
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"epoch": 0.5123428039124359,
|
| 886 |
+
"grad_norm": 0.5805428989783042,
|
| 887 |
+
"learning_rate": 4.606489471867449e-05,
|
| 888 |
+
"loss": 0.4427,
|
| 889 |
+
"num_tokens": 575160720.0,
|
| 890 |
+
"step": 550
|
| 891 |
+
},
|
| 892 |
+
{
|
| 893 |
+
"epoch": 0.5170004657661854,
|
| 894 |
+
"grad_norm": 0.4481109935171867,
|
| 895 |
+
"learning_rate": 4.597859855022437e-05,
|
| 896 |
+
"loss": 0.429,
|
| 897 |
+
"num_tokens": 580403600.0,
|
| 898 |
+
"step": 555
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.5216581276199348,
|
| 902 |
+
"grad_norm": 0.4306150535473462,
|
| 903 |
+
"learning_rate": 4.589230238177425e-05,
|
| 904 |
+
"loss": 0.4334,
|
| 905 |
+
"num_tokens": 585635440.0,
|
| 906 |
+
"step": 560
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.5263157894736842,
|
| 910 |
+
"grad_norm": 0.4218043527459623,
|
| 911 |
+
"learning_rate": 4.5806006213324134e-05,
|
| 912 |
+
"loss": 0.4319,
|
| 913 |
+
"num_tokens": 590878320.0,
|
| 914 |
+
"step": 565
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 0.5309734513274337,
|
| 918 |
+
"grad_norm": 0.3773682370056681,
|
| 919 |
+
"learning_rate": 4.5719710044874006e-05,
|
| 920 |
+
"loss": 0.4309,
|
| 921 |
+
"num_tokens": 596063606.0,
|
| 922 |
+
"step": 570
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"epoch": 0.5356311131811831,
|
| 926 |
+
"grad_norm": 0.3725777888860041,
|
| 927 |
+
"learning_rate": 4.563341387642389e-05,
|
| 928 |
+
"loss": 0.4298,
|
| 929 |
+
"num_tokens": 601306486.0,
|
| 930 |
+
"step": 575
|
| 931 |
+
},
|
| 932 |
+
{
|
| 933 |
+
"epoch": 0.5402887750349324,
|
| 934 |
+
"grad_norm": 0.32850168482374853,
|
| 935 |
+
"learning_rate": 4.554711770797377e-05,
|
| 936 |
+
"loss": 0.4317,
|
| 937 |
+
"num_tokens": 606451006.0,
|
| 938 |
+
"step": 580
|
| 939 |
+
},
|
| 940 |
+
{
|
| 941 |
+
"epoch": 0.5449464368886818,
|
| 942 |
+
"grad_norm": 0.3344939451761741,
|
| 943 |
+
"learning_rate": 4.546082153952365e-05,
|
| 944 |
+
"loss": 0.426,
|
| 945 |
+
"num_tokens": 611693886.0,
|
| 946 |
+
"step": 585
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"epoch": 0.5496040987424313,
|
| 950 |
+
"grad_norm": 0.4068375974188898,
|
| 951 |
+
"learning_rate": 4.5374525371073526e-05,
|
| 952 |
+
"loss": 0.4421,
|
| 953 |
+
"num_tokens": 616936766.0,
|
| 954 |
+
"step": 590
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.5542617605961807,
|
| 958 |
+
"grad_norm": 0.4761673073396981,
|
| 959 |
+
"learning_rate": 4.5288229202623404e-05,
|
| 960 |
+
"loss": 0.4329,
|
| 961 |
+
"num_tokens": 622179646.0,
|
| 962 |
+
"step": 595
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.5589194224499301,
|
| 966 |
+
"grad_norm": 0.44663542891933206,
|
| 967 |
+
"learning_rate": 4.520193303417328e-05,
|
| 968 |
+
"loss": 0.4365,
|
| 969 |
+
"num_tokens": 627422526.0,
|
| 970 |
+
"step": 600
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 0.5635770843036796,
|
| 974 |
+
"grad_norm": 0.44847735353439966,
|
| 975 |
+
"learning_rate": 4.511563686572317e-05,
|
| 976 |
+
"loss": 0.412,
|
| 977 |
+
"num_tokens": 632619928.0,
|
| 978 |
+
"step": 605
|
| 979 |
+
},
|
| 980 |
+
{
|
| 981 |
+
"epoch": 0.568234746157429,
|
| 982 |
+
"grad_norm": 0.45628359974960664,
|
| 983 |
+
"learning_rate": 4.5029340697273045e-05,
|
| 984 |
+
"loss": 0.4308,
|
| 985 |
+
"num_tokens": 637862808.0,
|
| 986 |
+
"step": 610
|
| 987 |
+
},
|
| 988 |
+
{
|
| 989 |
+
"epoch": 0.5728924080111784,
|
| 990 |
+
"grad_norm": 0.4800117779432551,
|
| 991 |
+
"learning_rate": 4.4943044528822923e-05,
|
| 992 |
+
"loss": 0.4228,
|
| 993 |
+
"num_tokens": 643105688.0,
|
| 994 |
+
"step": 615
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 0.5775500698649279,
|
| 998 |
+
"grad_norm": 0.5546132432412902,
|
| 999 |
+
"learning_rate": 4.48567483603728e-05,
|
| 1000 |
+
"loss": 0.4269,
|
| 1001 |
+
"num_tokens": 648348568.0,
|
| 1002 |
+
"step": 620
|
| 1003 |
+
},
|
| 1004 |
+
{
|
| 1005 |
+
"epoch": 0.5822077317186772,
|
| 1006 |
+
"grad_norm": 0.4664261556549962,
|
| 1007 |
+
"learning_rate": 4.477045219192268e-05,
|
| 1008 |
+
"loss": 0.4368,
|
| 1009 |
+
"num_tokens": 653591448.0,
|
| 1010 |
+
"step": 625
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.5868653935724266,
|
| 1014 |
+
"grad_norm": 0.42681630594448233,
|
| 1015 |
+
"learning_rate": 4.4684156023472565e-05,
|
| 1016 |
+
"loss": 0.4222,
|
| 1017 |
+
"num_tokens": 658834328.0,
|
| 1018 |
+
"step": 630
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.5915230554261761,
|
| 1022 |
+
"grad_norm": 0.4187275561832938,
|
| 1023 |
+
"learning_rate": 4.4597859855022436e-05,
|
| 1024 |
+
"loss": 0.4222,
|
| 1025 |
+
"num_tokens": 664028780.0,
|
| 1026 |
+
"step": 635
|
| 1027 |
+
},
|
| 1028 |
+
{
|
| 1029 |
+
"epoch": 0.5961807172799255,
|
| 1030 |
+
"grad_norm": 0.35933633316781455,
|
| 1031 |
+
"learning_rate": 4.4511563686572315e-05,
|
| 1032 |
+
"loss": 0.4281,
|
| 1033 |
+
"num_tokens": 669256250.0,
|
| 1034 |
+
"step": 640
|
| 1035 |
+
},
|
| 1036 |
+
{
|
| 1037 |
+
"epoch": 0.6008383791336749,
|
| 1038 |
+
"grad_norm": 0.3750506834697772,
|
| 1039 |
+
"learning_rate": 4.44252675181222e-05,
|
| 1040 |
+
"loss": 0.426,
|
| 1041 |
+
"num_tokens": 674460550.0,
|
| 1042 |
+
"step": 645
|
| 1043 |
+
},
|
| 1044 |
+
{
|
| 1045 |
+
"epoch": 0.6054960409874243,
|
| 1046 |
+
"grad_norm": 0.45094143093344574,
|
| 1047 |
+
"learning_rate": 4.433897134967208e-05,
|
| 1048 |
+
"loss": 0.4238,
|
| 1049 |
+
"num_tokens": 679701528.0,
|
| 1050 |
+
"step": 650
|
| 1051 |
+
},
|
| 1052 |
+
{
|
| 1053 |
+
"epoch": 0.6101537028411738,
|
| 1054 |
+
"grad_norm": 0.3686716302533929,
|
| 1055 |
+
"learning_rate": 4.4252675181221956e-05,
|
| 1056 |
+
"loss": 0.4311,
|
| 1057 |
+
"num_tokens": 684944408.0,
|
| 1058 |
+
"step": 655
|
| 1059 |
+
},
|
| 1060 |
+
{
|
| 1061 |
+
"epoch": 0.6148113646949231,
|
| 1062 |
+
"grad_norm": 0.4708342271610549,
|
| 1063 |
+
"learning_rate": 4.4166379012771834e-05,
|
| 1064 |
+
"loss": 0.4325,
|
| 1065 |
+
"num_tokens": 690187288.0,
|
| 1066 |
+
"step": 660
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.6194690265486725,
|
| 1070 |
+
"grad_norm": 0.3687257046878129,
|
| 1071 |
+
"learning_rate": 4.408008284432171e-05,
|
| 1072 |
+
"loss": 0.4257,
|
| 1073 |
+
"num_tokens": 695372640.0,
|
| 1074 |
+
"step": 665
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.624126688402422,
|
| 1078 |
+
"grad_norm": 0.34502453479936046,
|
| 1079 |
+
"learning_rate": 4.39937866758716e-05,
|
| 1080 |
+
"loss": 0.4287,
|
| 1081 |
+
"num_tokens": 700615520.0,
|
| 1082 |
+
"step": 670
|
| 1083 |
+
},
|
| 1084 |
+
{
|
| 1085 |
+
"epoch": 0.6287843502561714,
|
| 1086 |
+
"grad_norm": 0.57257718960929,
|
| 1087 |
+
"learning_rate": 4.3907490507421476e-05,
|
| 1088 |
+
"loss": 0.4216,
|
| 1089 |
+
"num_tokens": 705831004.0,
|
| 1090 |
+
"step": 675
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"epoch": 0.6334420121099208,
|
| 1094 |
+
"grad_norm": 0.40743947034127986,
|
| 1095 |
+
"learning_rate": 4.382119433897135e-05,
|
| 1096 |
+
"loss": 0.4254,
|
| 1097 |
+
"num_tokens": 711015208.0,
|
| 1098 |
+
"step": 680
|
| 1099 |
+
},
|
| 1100 |
+
{
|
| 1101 |
+
"epoch": 0.6380996739636703,
|
| 1102 |
+
"grad_norm": 0.4712504333805676,
|
| 1103 |
+
"learning_rate": 4.373489817052123e-05,
|
| 1104 |
+
"loss": 0.4357,
|
| 1105 |
+
"num_tokens": 716205240.0,
|
| 1106 |
+
"step": 685
|
| 1107 |
+
},
|
| 1108 |
+
{
|
| 1109 |
+
"epoch": 0.6427573358174197,
|
| 1110 |
+
"grad_norm": 0.31386050500322255,
|
| 1111 |
+
"learning_rate": 4.364860200207111e-05,
|
| 1112 |
+
"loss": 0.4245,
|
| 1113 |
+
"num_tokens": 721448120.0,
|
| 1114 |
+
"step": 690
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"epoch": 0.6474149976711691,
|
| 1118 |
+
"grad_norm": 0.34856077066736296,
|
| 1119 |
+
"learning_rate": 4.356230583362099e-05,
|
| 1120 |
+
"loss": 0.4243,
|
| 1121 |
+
"num_tokens": 726691000.0,
|
| 1122 |
+
"step": 695
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.6520726595249184,
|
| 1126 |
+
"grad_norm": 0.35138951547463787,
|
| 1127 |
+
"learning_rate": 4.347600966517087e-05,
|
| 1128 |
+
"loss": 0.4208,
|
| 1129 |
+
"num_tokens": 731930908.0,
|
| 1130 |
+
"step": 700
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.6567303213786679,
|
| 1134 |
+
"grad_norm": 0.3563298490627363,
|
| 1135 |
+
"learning_rate": 4.3389713496720745e-05,
|
| 1136 |
+
"loss": 0.4184,
|
| 1137 |
+
"num_tokens": 737133156.0,
|
| 1138 |
+
"step": 705
|
| 1139 |
+
},
|
| 1140 |
+
{
|
| 1141 |
+
"epoch": 0.6613879832324173,
|
| 1142 |
+
"grad_norm": 0.29828582782393925,
|
| 1143 |
+
"learning_rate": 4.330341732827063e-05,
|
| 1144 |
+
"loss": 0.4319,
|
| 1145 |
+
"num_tokens": 742336330.0,
|
| 1146 |
+
"step": 710
|
| 1147 |
+
},
|
| 1148 |
+
{
|
| 1149 |
+
"epoch": 0.6660456450861667,
|
| 1150 |
+
"grad_norm": 0.4554868776579047,
|
| 1151 |
+
"learning_rate": 4.321712115982051e-05,
|
| 1152 |
+
"loss": 0.4245,
|
| 1153 |
+
"num_tokens": 747579210.0,
|
| 1154 |
+
"step": 715
|
| 1155 |
+
},
|
| 1156 |
+
{
|
| 1157 |
+
"epoch": 0.6707033069399162,
|
| 1158 |
+
"grad_norm": 0.44237565032771087,
|
| 1159 |
+
"learning_rate": 4.3130824991370387e-05,
|
| 1160 |
+
"loss": 0.4163,
|
| 1161 |
+
"num_tokens": 752752000.0,
|
| 1162 |
+
"step": 720
|
| 1163 |
+
},
|
| 1164 |
+
{
|
| 1165 |
+
"epoch": 0.6753609687936656,
|
| 1166 |
+
"grad_norm": 0.4203289082659788,
|
| 1167 |
+
"learning_rate": 4.3044528822920265e-05,
|
| 1168 |
+
"loss": 0.4204,
|
| 1169 |
+
"num_tokens": 757994880.0,
|
| 1170 |
+
"step": 725
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"epoch": 0.680018630647415,
|
| 1174 |
+
"grad_norm": 0.42671358285819366,
|
| 1175 |
+
"learning_rate": 4.295823265447014e-05,
|
| 1176 |
+
"loss": 0.4277,
|
| 1177 |
+
"num_tokens": 763237760.0,
|
| 1178 |
+
"step": 730
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.6846762925011645,
|
| 1182 |
+
"grad_norm": 0.37538834692647144,
|
| 1183 |
+
"learning_rate": 4.287193648602002e-05,
|
| 1184 |
+
"loss": 0.4157,
|
| 1185 |
+
"num_tokens": 768480640.0,
|
| 1186 |
+
"step": 735
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.6893339543549138,
|
| 1190 |
+
"grad_norm": 0.4556647024263887,
|
| 1191 |
+
"learning_rate": 4.27856403175699e-05,
|
| 1192 |
+
"loss": 0.4197,
|
| 1193 |
+
"num_tokens": 773723520.0,
|
| 1194 |
+
"step": 740
|
| 1195 |
+
},
|
| 1196 |
+
{
|
| 1197 |
+
"epoch": 0.6939916162086632,
|
| 1198 |
+
"grad_norm": 0.4811016264457114,
|
| 1199 |
+
"learning_rate": 4.269934414911978e-05,
|
| 1200 |
+
"loss": 0.4181,
|
| 1201 |
+
"num_tokens": 778966400.0,
|
| 1202 |
+
"step": 745
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"epoch": 0.6986492780624126,
|
| 1206 |
+
"grad_norm": 0.46408266345529087,
|
| 1207 |
+
"learning_rate": 4.261304798066966e-05,
|
| 1208 |
+
"loss": 0.4262,
|
| 1209 |
+
"num_tokens": 784209280.0,
|
| 1210 |
+
"step": 750
|
| 1211 |
+
},
|
| 1212 |
+
{
|
| 1213 |
+
"epoch": 0.7033069399161621,
|
| 1214 |
+
"grad_norm": 0.4571430025824553,
|
| 1215 |
+
"learning_rate": 4.252675181221954e-05,
|
| 1216 |
+
"loss": 0.4133,
|
| 1217 |
+
"num_tokens": 789452160.0,
|
| 1218 |
+
"step": 755
|
| 1219 |
+
},
|
| 1220 |
+
{
|
| 1221 |
+
"epoch": 0.7079646017699115,
|
| 1222 |
+
"grad_norm": 0.44928992980297267,
|
| 1223 |
+
"learning_rate": 4.244045564376942e-05,
|
| 1224 |
+
"loss": 0.4183,
|
| 1225 |
+
"num_tokens": 794695040.0,
|
| 1226 |
+
"step": 760
|
| 1227 |
+
},
|
| 1228 |
+
{
|
| 1229 |
+
"epoch": 0.7126222636236609,
|
| 1230 |
+
"grad_norm": 0.42294682770420816,
|
| 1231 |
+
"learning_rate": 4.23541594753193e-05,
|
| 1232 |
+
"loss": 0.4256,
|
| 1233 |
+
"num_tokens": 799937676.0,
|
| 1234 |
+
"step": 765
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 0.7172799254774104,
|
| 1238 |
+
"grad_norm": 0.46170931025430106,
|
| 1239 |
+
"learning_rate": 4.2267863306869176e-05,
|
| 1240 |
+
"loss": 0.425,
|
| 1241 |
+
"num_tokens": 805180556.0,
|
| 1242 |
+
"step": 770
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.7219375873311598,
|
| 1246 |
+
"grad_norm": 0.5782381769703572,
|
| 1247 |
+
"learning_rate": 4.2181567138419054e-05,
|
| 1248 |
+
"loss": 0.4136,
|
| 1249 |
+
"num_tokens": 810397834.0,
|
| 1250 |
+
"step": 775
|
| 1251 |
+
},
|
| 1252 |
+
{
|
| 1253 |
+
"epoch": 0.7265952491849091,
|
| 1254 |
+
"grad_norm": 0.41650244211144916,
|
| 1255 |
+
"learning_rate": 4.209527096996894e-05,
|
| 1256 |
+
"loss": 0.4304,
|
| 1257 |
+
"num_tokens": 815565546.0,
|
| 1258 |
+
"step": 780
|
| 1259 |
+
},
|
| 1260 |
+
{
|
| 1261 |
+
"epoch": 0.7312529110386586,
|
| 1262 |
+
"grad_norm": 0.43752752013886975,
|
| 1263 |
+
"learning_rate": 4.200897480151881e-05,
|
| 1264 |
+
"loss": 0.4228,
|
| 1265 |
+
"num_tokens": 820802646.0,
|
| 1266 |
+
"step": 785
|
| 1267 |
+
},
|
| 1268 |
+
{
|
| 1269 |
+
"epoch": 0.735910572892408,
|
| 1270 |
+
"grad_norm": 0.3573411269154002,
|
| 1271 |
+
"learning_rate": 4.1922678633068695e-05,
|
| 1272 |
+
"loss": 0.414,
|
| 1273 |
+
"num_tokens": 826045526.0,
|
| 1274 |
+
"step": 790
|
| 1275 |
+
},
|
| 1276 |
+
{
|
| 1277 |
+
"epoch": 0.7405682347461574,
|
| 1278 |
+
"grad_norm": 0.37034836674225624,
|
| 1279 |
+
"learning_rate": 4.1836382464618573e-05,
|
| 1280 |
+
"loss": 0.4235,
|
| 1281 |
+
"num_tokens": 831245076.0,
|
| 1282 |
+
"step": 795
|
| 1283 |
+
},
|
| 1284 |
+
{
|
| 1285 |
+
"epoch": 0.7452258965999069,
|
| 1286 |
+
"grad_norm": 0.3473109235091556,
|
| 1287 |
+
"learning_rate": 4.175008629616845e-05,
|
| 1288 |
+
"loss": 0.4174,
|
| 1289 |
+
"num_tokens": 836487956.0,
|
| 1290 |
+
"step": 800
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.7498835584536563,
|
| 1294 |
+
"grad_norm": 0.3454248879956119,
|
| 1295 |
+
"learning_rate": 4.166379012771833e-05,
|
| 1296 |
+
"loss": 0.4343,
|
| 1297 |
+
"num_tokens": 841670226.0,
|
| 1298 |
+
"step": 805
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.7545412203074057,
|
| 1302 |
+
"grad_norm": 0.45090929011440717,
|
| 1303 |
+
"learning_rate": 4.157749395926821e-05,
|
| 1304 |
+
"loss": 0.4188,
|
| 1305 |
+
"num_tokens": 846891280.0,
|
| 1306 |
+
"step": 810
|
| 1307 |
+
},
|
| 1308 |
+
{
|
| 1309 |
+
"epoch": 0.759198882161155,
|
| 1310 |
+
"grad_norm": 0.43284998579291406,
|
| 1311 |
+
"learning_rate": 4.1491197790818086e-05,
|
| 1312 |
+
"loss": 0.4216,
|
| 1313 |
+
"num_tokens": 852076096.0,
|
| 1314 |
+
"step": 815
|
| 1315 |
+
},
|
| 1316 |
+
{
|
| 1317 |
+
"epoch": 0.7638565440149045,
|
| 1318 |
+
"grad_norm": 0.3181896282241753,
|
| 1319 |
+
"learning_rate": 4.140490162236797e-05,
|
| 1320 |
+
"loss": 0.4204,
|
| 1321 |
+
"num_tokens": 857318976.0,
|
| 1322 |
+
"step": 820
|
| 1323 |
+
},
|
| 1324 |
+
{
|
| 1325 |
+
"epoch": 0.7685142058686539,
|
| 1326 |
+
"grad_norm": 0.46883689539559736,
|
| 1327 |
+
"learning_rate": 4.131860545391785e-05,
|
| 1328 |
+
"loss": 0.4102,
|
| 1329 |
+
"num_tokens": 862561856.0,
|
| 1330 |
+
"step": 825
|
| 1331 |
+
},
|
| 1332 |
+
{
|
| 1333 |
+
"epoch": 0.7731718677224033,
|
| 1334 |
+
"grad_norm": 0.43638309621826277,
|
| 1335 |
+
"learning_rate": 4.123230928546773e-05,
|
| 1336 |
+
"loss": 0.4193,
|
| 1337 |
+
"num_tokens": 867804736.0,
|
| 1338 |
+
"step": 830
|
| 1339 |
+
},
|
| 1340 |
+
{
|
| 1341 |
+
"epoch": 0.7778295295761528,
|
| 1342 |
+
"grad_norm": 0.5494788138169401,
|
| 1343 |
+
"learning_rate": 4.1146013117017606e-05,
|
| 1344 |
+
"loss": 0.4255,
|
| 1345 |
+
"num_tokens": 873045328.0,
|
| 1346 |
+
"step": 835
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 0.7824871914299022,
|
| 1350 |
+
"grad_norm": 0.35117057126261253,
|
| 1351 |
+
"learning_rate": 4.1059716948567484e-05,
|
| 1352 |
+
"loss": 0.41,
|
| 1353 |
+
"num_tokens": 878249566.0,
|
| 1354 |
+
"step": 840
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.7871448532836516,
|
| 1358 |
+
"grad_norm": 0.547134386710333,
|
| 1359 |
+
"learning_rate": 4.097342078011737e-05,
|
| 1360 |
+
"loss": 0.4179,
|
| 1361 |
+
"num_tokens": 883492446.0,
|
| 1362 |
+
"step": 845
|
| 1363 |
+
},
|
| 1364 |
+
{
|
| 1365 |
+
"epoch": 0.7918025151374011,
|
| 1366 |
+
"grad_norm": 0.3667952082270578,
|
| 1367 |
+
"learning_rate": 4.088712461166724e-05,
|
| 1368 |
+
"loss": 0.4179,
|
| 1369 |
+
"num_tokens": 888735326.0,
|
| 1370 |
+
"step": 850
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 0.7964601769911505,
|
| 1374 |
+
"grad_norm": 0.35029407025170417,
|
| 1375 |
+
"learning_rate": 4.080082844321712e-05,
|
| 1376 |
+
"loss": 0.4093,
|
| 1377 |
+
"num_tokens": 893978206.0,
|
| 1378 |
+
"step": 855
|
| 1379 |
+
},
|
| 1380 |
+
{
|
| 1381 |
+
"epoch": 0.8011178388448998,
|
| 1382 |
+
"grad_norm": 0.39249238026288563,
|
| 1383 |
+
"learning_rate": 4.0714532274767004e-05,
|
| 1384 |
+
"loss": 0.4114,
|
| 1385 |
+
"num_tokens": 899180370.0,
|
| 1386 |
+
"step": 860
|
| 1387 |
+
},
|
| 1388 |
+
{
|
| 1389 |
+
"epoch": 0.8057755006986492,
|
| 1390 |
+
"grad_norm": 0.3511762742188835,
|
| 1391 |
+
"learning_rate": 4.062823610631688e-05,
|
| 1392 |
+
"loss": 0.4151,
|
| 1393 |
+
"num_tokens": 904405480.0,
|
| 1394 |
+
"step": 865
|
| 1395 |
+
},
|
| 1396 |
+
{
|
| 1397 |
+
"epoch": 0.8104331625523987,
|
| 1398 |
+
"grad_norm": 0.42731908571108257,
|
| 1399 |
+
"learning_rate": 4.054193993786676e-05,
|
| 1400 |
+
"loss": 0.4087,
|
| 1401 |
+
"num_tokens": 909648360.0,
|
| 1402 |
+
"step": 870
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.8150908244061481,
|
| 1406 |
+
"grad_norm": 0.5462125566533138,
|
| 1407 |
+
"learning_rate": 4.045564376941664e-05,
|
| 1408 |
+
"loss": 0.4192,
|
| 1409 |
+
"num_tokens": 914891240.0,
|
| 1410 |
+
"step": 875
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.8197484862598975,
|
| 1414 |
+
"grad_norm": 0.4238114065916947,
|
| 1415 |
+
"learning_rate": 4.036934760096652e-05,
|
| 1416 |
+
"loss": 0.4035,
|
| 1417 |
+
"num_tokens": 920134120.0,
|
| 1418 |
+
"step": 880
|
| 1419 |
+
},
|
| 1420 |
+
{
|
| 1421 |
+
"epoch": 0.824406148113647,
|
| 1422 |
+
"grad_norm": 0.4511242532489273,
|
| 1423 |
+
"learning_rate": 4.02830514325164e-05,
|
| 1424 |
+
"loss": 0.4193,
|
| 1425 |
+
"num_tokens": 925348344.0,
|
| 1426 |
+
"step": 885
|
| 1427 |
+
},
|
| 1428 |
+
{
|
| 1429 |
+
"epoch": 0.8290638099673964,
|
| 1430 |
+
"grad_norm": 0.3718602180962659,
|
| 1431 |
+
"learning_rate": 4.019675526406628e-05,
|
| 1432 |
+
"loss": 0.4183,
|
| 1433 |
+
"num_tokens": 930591224.0,
|
| 1434 |
+
"step": 890
|
| 1435 |
+
},
|
| 1436 |
+
{
|
| 1437 |
+
"epoch": 0.8337214718211458,
|
| 1438 |
+
"grad_norm": 0.42228810579780685,
|
| 1439 |
+
"learning_rate": 4.011045909561615e-05,
|
| 1440 |
+
"loss": 0.417,
|
| 1441 |
+
"num_tokens": 935834104.0,
|
| 1442 |
+
"step": 895
|
| 1443 |
+
},
|
| 1444 |
+
{
|
| 1445 |
+
"epoch": 0.8383791336748952,
|
| 1446 |
+
"grad_norm": 0.3343462952586969,
|
| 1447 |
+
"learning_rate": 4.0024162927166037e-05,
|
| 1448 |
+
"loss": 0.413,
|
| 1449 |
+
"num_tokens": 941076984.0,
|
| 1450 |
+
"step": 900
|
| 1451 |
+
},
|
| 1452 |
+
{
|
| 1453 |
+
"epoch": 0.8430367955286446,
|
| 1454 |
+
"grad_norm": 0.3695657194075559,
|
| 1455 |
+
"learning_rate": 3.9937866758715915e-05,
|
| 1456 |
+
"loss": 0.4166,
|
| 1457 |
+
"num_tokens": 946319864.0,
|
| 1458 |
+
"step": 905
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 0.847694457382394,
|
| 1462 |
+
"grad_norm": 0.3692226356910684,
|
| 1463 |
+
"learning_rate": 3.98515705902658e-05,
|
| 1464 |
+
"loss": 0.4228,
|
| 1465 |
+
"num_tokens": 951515422.0,
|
| 1466 |
+
"step": 910
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.8523521192361434,
|
| 1470 |
+
"grad_norm": 0.46933444657499496,
|
| 1471 |
+
"learning_rate": 3.976527442181567e-05,
|
| 1472 |
+
"loss": 0.4137,
|
| 1473 |
+
"num_tokens": 956704248.0,
|
| 1474 |
+
"step": 915
|
| 1475 |
+
},
|
| 1476 |
+
{
|
| 1477 |
+
"epoch": 0.8570097810898929,
|
| 1478 |
+
"grad_norm": 0.420307871401766,
|
| 1479 |
+
"learning_rate": 3.967897825336555e-05,
|
| 1480 |
+
"loss": 0.4209,
|
| 1481 |
+
"num_tokens": 961947128.0,
|
| 1482 |
+
"step": 920
|
| 1483 |
+
},
|
| 1484 |
+
{
|
| 1485 |
+
"epoch": 0.8616674429436423,
|
| 1486 |
+
"grad_norm": 0.3405221647756501,
|
| 1487 |
+
"learning_rate": 3.9592682084915434e-05,
|
| 1488 |
+
"loss": 0.4147,
|
| 1489 |
+
"num_tokens": 967190008.0,
|
| 1490 |
+
"step": 925
|
| 1491 |
+
},
|
| 1492 |
+
{
|
| 1493 |
+
"epoch": 0.8663251047973917,
|
| 1494 |
+
"grad_norm": 0.44331006916678434,
|
| 1495 |
+
"learning_rate": 3.950638591646531e-05,
|
| 1496 |
+
"loss": 0.4178,
|
| 1497 |
+
"num_tokens": 972432888.0,
|
| 1498 |
+
"step": 930
|
| 1499 |
+
},
|
| 1500 |
+
{
|
| 1501 |
+
"epoch": 0.8709827666511412,
|
| 1502 |
+
"grad_norm": 0.3422809377363051,
|
| 1503 |
+
"learning_rate": 3.942008974801519e-05,
|
| 1504 |
+
"loss": 0.4039,
|
| 1505 |
+
"num_tokens": 977675768.0,
|
| 1506 |
+
"step": 935
|
| 1507 |
+
},
|
| 1508 |
+
{
|
| 1509 |
+
"epoch": 0.8756404285048905,
|
| 1510 |
+
"grad_norm": 0.4174187028348948,
|
| 1511 |
+
"learning_rate": 3.933379357956507e-05,
|
| 1512 |
+
"loss": 0.4058,
|
| 1513 |
+
"num_tokens": 982908826.0,
|
| 1514 |
+
"step": 940
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 0.8802980903586399,
|
| 1518 |
+
"grad_norm": 0.36023411801863825,
|
| 1519 |
+
"learning_rate": 3.924749741111495e-05,
|
| 1520 |
+
"loss": 0.4083,
|
| 1521 |
+
"num_tokens": 988129568.0,
|
| 1522 |
+
"step": 945
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 0.8849557522123894,
|
| 1526 |
+
"grad_norm": 0.37697561626191384,
|
| 1527 |
+
"learning_rate": 3.916120124266483e-05,
|
| 1528 |
+
"loss": 0.3982,
|
| 1529 |
+
"num_tokens": 993372448.0,
|
| 1530 |
+
"step": 950
|
| 1531 |
+
},
|
| 1532 |
+
{
|
| 1533 |
+
"epoch": 0.8896134140661388,
|
| 1534 |
+
"grad_norm": 0.32970248458357243,
|
| 1535 |
+
"learning_rate": 3.9074905074214704e-05,
|
| 1536 |
+
"loss": 0.4124,
|
| 1537 |
+
"num_tokens": 998615328.0,
|
| 1538 |
+
"step": 955
|
| 1539 |
+
},
|
| 1540 |
+
{
|
| 1541 |
+
"epoch": 0.8942710759198882,
|
| 1542 |
+
"grad_norm": 0.6423339790046058,
|
| 1543 |
+
"learning_rate": 3.898860890576458e-05,
|
| 1544 |
+
"loss": 0.4188,
|
| 1545 |
+
"num_tokens": 1003840426.0,
|
| 1546 |
+
"step": 960
|
| 1547 |
+
},
|
| 1548 |
+
{
|
| 1549 |
+
"epoch": 0.8989287377736377,
|
| 1550 |
+
"grad_norm": 0.33989654580246514,
|
| 1551 |
+
"learning_rate": 3.890231273731447e-05,
|
| 1552 |
+
"loss": 0.4129,
|
| 1553 |
+
"num_tokens": 1009083306.0,
|
| 1554 |
+
"step": 965
|
| 1555 |
+
},
|
| 1556 |
+
{
|
| 1557 |
+
"epoch": 0.9035863996273871,
|
| 1558 |
+
"grad_norm": 0.4253291410824839,
|
| 1559 |
+
"learning_rate": 3.8816016568864345e-05,
|
| 1560 |
+
"loss": 0.4156,
|
| 1561 |
+
"num_tokens": 1014326186.0,
|
| 1562 |
+
"step": 970
|
| 1563 |
+
},
|
| 1564 |
+
{
|
| 1565 |
+
"epoch": 0.9082440614811365,
|
| 1566 |
+
"grad_norm": 0.4362973979341557,
|
| 1567 |
+
"learning_rate": 3.8729720400414224e-05,
|
| 1568 |
+
"loss": 0.4101,
|
| 1569 |
+
"num_tokens": 1019569066.0,
|
| 1570 |
+
"step": 975
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 0.9129017233348858,
|
| 1574 |
+
"grad_norm": 0.3848511989847654,
|
| 1575 |
+
"learning_rate": 3.86434242319641e-05,
|
| 1576 |
+
"loss": 0.4133,
|
| 1577 |
+
"num_tokens": 1024811946.0,
|
| 1578 |
+
"step": 980
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.9175593851886353,
|
| 1582 |
+
"grad_norm": 0.41823519040308965,
|
| 1583 |
+
"learning_rate": 3.855712806351398e-05,
|
| 1584 |
+
"loss": 0.4175,
|
| 1585 |
+
"num_tokens": 1030054826.0,
|
| 1586 |
+
"step": 985
|
| 1587 |
+
},
|
| 1588 |
+
{
|
| 1589 |
+
"epoch": 0.9222170470423847,
|
| 1590 |
+
"grad_norm": 0.4588981814462144,
|
| 1591 |
+
"learning_rate": 3.8470831895063865e-05,
|
| 1592 |
+
"loss": 0.3901,
|
| 1593 |
+
"num_tokens": 1035279144.0,
|
| 1594 |
+
"step": 990
|
| 1595 |
+
},
|
| 1596 |
+
{
|
| 1597 |
+
"epoch": 0.9268747088961341,
|
| 1598 |
+
"grad_norm": 0.42658567347281534,
|
| 1599 |
+
"learning_rate": 3.838453572661374e-05,
|
| 1600 |
+
"loss": 0.4065,
|
| 1601 |
+
"num_tokens": 1040522024.0,
|
| 1602 |
+
"step": 995
|
| 1603 |
+
},
|
| 1604 |
+
{
|
| 1605 |
+
"epoch": 0.9315323707498836,
|
| 1606 |
+
"grad_norm": 0.40893294515048517,
|
| 1607 |
+
"learning_rate": 3.8298239558163615e-05,
|
| 1608 |
+
"loss": 0.4098,
|
| 1609 |
+
"num_tokens": 1045764904.0,
|
| 1610 |
+
"step": 1000
|
| 1611 |
+
},
|
| 1612 |
+
{
|
| 1613 |
+
"epoch": 0.936190032603633,
|
| 1614 |
+
"grad_norm": 0.3307735236305363,
|
| 1615 |
+
"learning_rate": 3.82119433897135e-05,
|
| 1616 |
+
"loss": 0.4182,
|
| 1617 |
+
"num_tokens": 1051007784.0,
|
| 1618 |
+
"step": 1005
|
| 1619 |
+
},
|
| 1620 |
+
{
|
| 1621 |
+
"epoch": 0.9408476944573824,
|
| 1622 |
+
"grad_norm": 0.37133171698698186,
|
| 1623 |
+
"learning_rate": 3.812564722126338e-05,
|
| 1624 |
+
"loss": 0.4096,
|
| 1625 |
+
"num_tokens": 1056250664.0,
|
| 1626 |
+
"step": 1010
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"epoch": 0.9455053563111319,
|
| 1630 |
+
"grad_norm": 0.3254043253190745,
|
| 1631 |
+
"learning_rate": 3.8039351052813256e-05,
|
| 1632 |
+
"loss": 0.4104,
|
| 1633 |
+
"num_tokens": 1061493544.0,
|
| 1634 |
+
"step": 1015
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.9501630181648812,
|
| 1638 |
+
"grad_norm": 0.33341728510354113,
|
| 1639 |
+
"learning_rate": 3.7953054884363134e-05,
|
| 1640 |
+
"loss": 0.4187,
|
| 1641 |
+
"num_tokens": 1066736424.0,
|
| 1642 |
+
"step": 1020
|
| 1643 |
+
},
|
| 1644 |
+
{
|
| 1645 |
+
"epoch": 0.9548206800186306,
|
| 1646 |
+
"grad_norm": 0.3507124223156066,
|
| 1647 |
+
"learning_rate": 3.786675871591301e-05,
|
| 1648 |
+
"loss": 0.411,
|
| 1649 |
+
"num_tokens": 1071979304.0,
|
| 1650 |
+
"step": 1025
|
| 1651 |
+
},
|
| 1652 |
+
{
|
| 1653 |
+
"epoch": 0.95947834187238,
|
| 1654 |
+
"grad_norm": 0.34950902787772553,
|
| 1655 |
+
"learning_rate": 3.77804625474629e-05,
|
| 1656 |
+
"loss": 0.4028,
|
| 1657 |
+
"num_tokens": 1077222184.0,
|
| 1658 |
+
"step": 1030
|
| 1659 |
+
},
|
| 1660 |
+
{
|
| 1661 |
+
"epoch": 0.9641360037261295,
|
| 1662 |
+
"grad_norm": 0.34720406632790546,
|
| 1663 |
+
"learning_rate": 3.7694166379012776e-05,
|
| 1664 |
+
"loss": 0.4059,
|
| 1665 |
+
"num_tokens": 1082465064.0,
|
| 1666 |
+
"step": 1035
|
| 1667 |
+
},
|
| 1668 |
+
{
|
| 1669 |
+
"epoch": 0.9687936655798789,
|
| 1670 |
+
"grad_norm": 0.341563694020237,
|
| 1671 |
+
"learning_rate": 3.7607870210562654e-05,
|
| 1672 |
+
"loss": 0.405,
|
| 1673 |
+
"num_tokens": 1087707944.0,
|
| 1674 |
+
"step": 1040
|
| 1675 |
+
},
|
| 1676 |
+
{
|
| 1677 |
+
"epoch": 0.9734513274336283,
|
| 1678 |
+
"grad_norm": 0.3609889557327282,
|
| 1679 |
+
"learning_rate": 3.752157404211253e-05,
|
| 1680 |
+
"loss": 0.4059,
|
| 1681 |
+
"num_tokens": 1092923046.0,
|
| 1682 |
+
"step": 1045
|
| 1683 |
+
},
|
| 1684 |
+
{
|
| 1685 |
+
"epoch": 0.9781089892873778,
|
| 1686 |
+
"grad_norm": 0.3125635476039176,
|
| 1687 |
+
"learning_rate": 3.743527787366241e-05,
|
| 1688 |
+
"loss": 0.4057,
|
| 1689 |
+
"num_tokens": 1098165926.0,
|
| 1690 |
+
"step": 1050
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 0.9827666511411272,
|
| 1694 |
+
"grad_norm": 0.3381394074099237,
|
| 1695 |
+
"learning_rate": 3.734898170521229e-05,
|
| 1696 |
+
"loss": 0.4098,
|
| 1697 |
+
"num_tokens": 1103324696.0,
|
| 1698 |
+
"step": 1055
|
| 1699 |
+
},
|
| 1700 |
+
{
|
| 1701 |
+
"epoch": 0.9874243129948765,
|
| 1702 |
+
"grad_norm": 0.3968089210296165,
|
| 1703 |
+
"learning_rate": 3.7262685536762174e-05,
|
| 1704 |
+
"loss": 0.409,
|
| 1705 |
+
"num_tokens": 1108567576.0,
|
| 1706 |
+
"step": 1060
|
| 1707 |
+
},
|
| 1708 |
+
{
|
| 1709 |
+
"epoch": 0.992081974848626,
|
| 1710 |
+
"grad_norm": 0.4001357948983539,
|
| 1711 |
+
"learning_rate": 3.7176389368312045e-05,
|
| 1712 |
+
"loss": 0.4079,
|
| 1713 |
+
"num_tokens": 1113810456.0,
|
| 1714 |
+
"step": 1065
|
| 1715 |
+
},
|
| 1716 |
+
{
|
| 1717 |
+
"epoch": 0.9967396367023754,
|
| 1718 |
+
"grad_norm": 0.36783487639258866,
|
| 1719 |
+
"learning_rate": 3.709009319986193e-05,
|
| 1720 |
+
"loss": 0.3987,
|
| 1721 |
+
"num_tokens": 1119053336.0,
|
| 1722 |
+
"step": 1070
|
| 1723 |
+
},
|
| 1724 |
+
{
|
| 1725 |
+
"epoch": 1.00093153237075,
|
| 1726 |
+
"grad_norm": 0.5233605999346443,
|
| 1727 |
+
"learning_rate": 3.700379703141181e-05,
|
| 1728 |
+
"loss": 0.4104,
|
| 1729 |
+
"num_tokens": 1123444248.0,
|
| 1730 |
+
"step": 1075
|
| 1731 |
+
},
|
| 1732 |
+
{
|
| 1733 |
+
"epoch": 1.0055891942244992,
|
| 1734 |
+
"grad_norm": 0.35621728589294477,
|
| 1735 |
+
"learning_rate": 3.6917500862961687e-05,
|
| 1736 |
+
"loss": 0.3564,
|
| 1737 |
+
"num_tokens": 1128625632.0,
|
| 1738 |
+
"step": 1080
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"epoch": 1.0102468560782487,
|
| 1742 |
+
"grad_norm": 0.3379539324474777,
|
| 1743 |
+
"learning_rate": 3.6831204694511565e-05,
|
| 1744 |
+
"loss": 0.3426,
|
| 1745 |
+
"num_tokens": 1133868512.0,
|
| 1746 |
+
"step": 1085
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 1.0149045179319982,
|
| 1750 |
+
"grad_norm": 0.3230715626176304,
|
| 1751 |
+
"learning_rate": 3.674490852606144e-05,
|
| 1752 |
+
"loss": 0.3558,
|
| 1753 |
+
"num_tokens": 1139111392.0,
|
| 1754 |
+
"step": 1090
|
| 1755 |
+
},
|
| 1756 |
+
{
|
| 1757 |
+
"epoch": 1.0195621797857475,
|
| 1758 |
+
"grad_norm": 0.4474812744659829,
|
| 1759 |
+
"learning_rate": 3.665861235761132e-05,
|
| 1760 |
+
"loss": 0.3512,
|
| 1761 |
+
"num_tokens": 1144313368.0,
|
| 1762 |
+
"step": 1095
|
| 1763 |
+
},
|
| 1764 |
+
{
|
| 1765 |
+
"epoch": 1.024219841639497,
|
| 1766 |
+
"grad_norm": 0.3511076125082377,
|
| 1767 |
+
"learning_rate": 3.6572316189161206e-05,
|
| 1768 |
+
"loss": 0.3554,
|
| 1769 |
+
"num_tokens": 1149498184.0,
|
| 1770 |
+
"step": 1100
|
| 1771 |
+
}
|
| 1772 |
+
],
|
| 1773 |
+
"logging_steps": 5,
|
| 1774 |
+
"max_steps": 3219,
|
| 1775 |
+
"num_input_tokens_seen": 0,
|
| 1776 |
+
"num_train_epochs": 3,
|
| 1777 |
+
"save_steps": 550,
|
| 1778 |
+
"stateful_callbacks": {
|
| 1779 |
+
"TrainerControl": {
|
| 1780 |
+
"args": {
|
| 1781 |
+
"should_epoch_stop": false,
|
| 1782 |
+
"should_evaluate": false,
|
| 1783 |
+
"should_log": false,
|
| 1784 |
+
"should_save": true,
|
| 1785 |
+
"should_training_stop": false
|
| 1786 |
+
},
|
| 1787 |
+
"attributes": {}
|
| 1788 |
+
}
|
| 1789 |
+
},
|
| 1790 |
+
"total_flos": 9.419208775350354e+17,
|
| 1791 |
+
"train_batch_size": 1,
|
| 1792 |
+
"trial_name": null,
|
| 1793 |
+
"trial_params": null
|
| 1794 |
+
}
|
checkpoint-1100/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:899b8628780203e488835cce3e045b8d7ec93acc6ed785462cd6b0f8850577c4
|
| 3 |
+
size 7800
|
checkpoint-1100/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1100/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|