Training in progress, step 1650, checkpoint
Browse files- .gitattributes +1 -0
- checkpoint-1650/added_tokens.json +24 -0
- checkpoint-1650/config.json +32 -0
- checkpoint-1650/generation_config.json +9 -0
- checkpoint-1650/global_step1650/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1650/global_step1650/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1650/global_step1650/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1650/global_step1650/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1650/global_step1650/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1650/global_step1650/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1650/global_step1650/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1650/global_step1650/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1650/global_step1650/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-1650/global_step1650/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-1650/global_step1650/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-1650/global_step1650/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-1650/global_step1650/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-1650/global_step1650/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-1650/global_step1650/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-1650/global_step1650/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-1650/latest +1 -0
- checkpoint-1650/merges.txt +0 -0
- checkpoint-1650/model-00001-of-00004.safetensors +3 -0
- checkpoint-1650/model-00002-of-00004.safetensors +3 -0
- checkpoint-1650/model-00003-of-00004.safetensors +3 -0
- checkpoint-1650/model-00004-of-00004.safetensors +3 -0
- checkpoint-1650/model.safetensors.index.json +394 -0
- checkpoint-1650/rng_state_0.pth +3 -0
- checkpoint-1650/rng_state_1.pth +3 -0
- checkpoint-1650/rng_state_2.pth +3 -0
- checkpoint-1650/rng_state_3.pth +3 -0
- checkpoint-1650/rng_state_4.pth +3 -0
- checkpoint-1650/rng_state_5.pth +3 -0
- checkpoint-1650/rng_state_6.pth +3 -0
- checkpoint-1650/rng_state_7.pth +3 -0
- checkpoint-1650/scheduler.pt +3 -0
- checkpoint-1650/special_tokens_map.json +25 -0
- checkpoint-1650/tokenizer.json +3 -0
- checkpoint-1650/tokenizer_config.json +208 -0
- checkpoint-1650/trainer_state.json +2343 -0
- checkpoint-1650/training_args.bin +3 -0
- checkpoint-1650/vocab.json +0 -0
- checkpoint-1650/zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
checkpoint-1650/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-1650/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-1650/config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Qwen7B-Math-L28-LP32",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"end_conv_idx": 16,
|
| 9 |
+
"eos_token_id": 151645,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 3584,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 18944,
|
| 14 |
+
"max_position_embeddings": 32768,
|
| 15 |
+
"max_window_layers": 28,
|
| 16 |
+
"model_type": "qwen2",
|
| 17 |
+
"num_attention_heads": 28,
|
| 18 |
+
"num_conv": 1,
|
| 19 |
+
"num_hidden_layers": 32,
|
| 20 |
+
"num_key_value_heads": 4,
|
| 21 |
+
"rms_norm_eps": 1e-06,
|
| 22 |
+
"rope_scaling": null,
|
| 23 |
+
"rope_theta": 300000.0,
|
| 24 |
+
"sliding_window": null,
|
| 25 |
+
"start_conv_idx": 12,
|
| 26 |
+
"tie_word_embeddings": false,
|
| 27 |
+
"torch_dtype": "bfloat16",
|
| 28 |
+
"transformers_version": "4.49.0",
|
| 29 |
+
"use_cache": false,
|
| 30 |
+
"use_sliding_window": false,
|
| 31 |
+
"vocab_size": 152064
|
| 32 |
+
}
|
checkpoint-1650/generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": [
|
| 4 |
+
151645,
|
| 5 |
+
151643
|
| 6 |
+
],
|
| 7 |
+
"pad_token_id": 151643,
|
| 8 |
+
"transformers_version": "4.49.0"
|
| 9 |
+
}
|
checkpoint-1650/global_step1650/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:27755436c6a3324ad6cad5329630b2873d1e666b04ef3f4c9c0c629b4046b135
|
| 3 |
+
size 12821777702
|
checkpoint-1650/global_step1650/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2fe07ee3312fb86f96120c6a32b709eff8c3311f546ce6e621f448a227be000c
|
| 3 |
+
size 12821777702
|
checkpoint-1650/global_step1650/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d22ec558327df606cdac879a62ffd032d278e46c2b183a4043e9ca55df0381f
|
| 3 |
+
size 12821777702
|
checkpoint-1650/global_step1650/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b8fcd752d59f4dd0002fb60cfc1755e059ffae19b30aaaabb620591a3f90c764
|
| 3 |
+
size 12821777702
|
checkpoint-1650/global_step1650/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e81d3565da7e5b538fccf3bbbcb58c0cde44ed5c07f2bf4697a8c937ea443da0
|
| 3 |
+
size 12821777702
|
checkpoint-1650/global_step1650/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2dc5ce04b6c412ef59050b788a232f8cd3efc4c77220767fc7bdc20e79e1844
|
| 3 |
+
size 12821777702
|
checkpoint-1650/global_step1650/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:457eada28f3fda1a4afbfd25d9510c37af6fc3dcf386a22718c8d7db4a5ab6ac
|
| 3 |
+
size 12821777702
|
checkpoint-1650/global_step1650/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1491066678bbaa2e817b7e2c9a8661076e4db04b98ce45defc89142dd71a398a
|
| 3 |
+
size 12821777702
|
checkpoint-1650/global_step1650/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e481415f6d27f55d6624c19f8bb47fc4ea99432c01ef532ef701cd83678ad5a4
|
| 3 |
+
size 188165
|
checkpoint-1650/global_step1650/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd9dcc8b2900d97f75b5ffb9e3fabb4ddca9f9b4f5285d6f7224535b2e418b55
|
| 3 |
+
size 188165
|
checkpoint-1650/global_step1650/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ca227a1d6b5babec81bdbcfc4a8748a0508d31cc20a688e63908bd73ff2beb0
|
| 3 |
+
size 188165
|
checkpoint-1650/global_step1650/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:129174492e79c3d2a8bdb3cc9192244ff38075186c9ebcb1ab7cc392a3c050f1
|
| 3 |
+
size 188165
|
checkpoint-1650/global_step1650/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b4e0b754d0f83579105fa9d80837718d724875d613f4f17bd706fd326cf8281
|
| 3 |
+
size 188165
|
checkpoint-1650/global_step1650/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f696d396a3f0381df10df15701ae424dbc1726b2048cf9b54b7a7aa3a54a6964
|
| 3 |
+
size 188165
|
checkpoint-1650/global_step1650/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd2ff97898507370c076375a7d798cc5d4ab7b89d5d5be66ae9e6f073034b0fc
|
| 3 |
+
size 188165
|
checkpoint-1650/global_step1650/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2a77569dfb3c360ef61eacdef665361ad89034c889196f869dcdc566f284705b
|
| 3 |
+
size 188165
|
checkpoint-1650/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1650
|
checkpoint-1650/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1650/model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cebe966a4dfbea40d3b13a7a60508a2a58fa0d15c0cf9fd94aee9e8d4666d9f1
|
| 3 |
+
size 4877660776
|
checkpoint-1650/model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0569dfc6396a999fa7e0937b09ee530a3b7118e516690ef8b57825895cd071ea
|
| 3 |
+
size 4932751008
|
checkpoint-1650/model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09e028cc7d200ddd07ed56f3e6d8cb282ff1f7c3a70bb67649ddafb5803b00c3
|
| 3 |
+
size 4991495888
|
checkpoint-1650/model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38bd6134ca20ad8e1c5be08a5d1a1a755ff275b18e50bd542cfc8fa5b5915bf0
|
| 3 |
+
size 2293832048
|
checkpoint-1650/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 17095695360
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 272 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 308 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 320 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 321 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 322 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 323 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 324 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 325 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 326 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 328 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 329 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 330 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 331 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 333 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 334 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 335 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 336 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 337 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 338 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 339 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 340 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 341 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 342 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 343 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 344 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 345 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 346 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 347 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 348 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 349 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 350 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 352 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 353 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 354 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 355 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 356 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 358 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 360 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 364 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 365 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 366 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 367 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 368 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 369 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 370 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 371 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 372 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 373 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 374 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 375 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 376 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 377 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 378 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 379 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 380 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 381 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 382 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 383 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 384 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 385 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 386 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 387 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 388 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 389 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 390 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 391 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 392 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
| 393 |
+
}
|
| 394 |
+
}
|
checkpoint-1650/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
|
| 3 |
+
size 15984
|
checkpoint-1650/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
|
| 3 |
+
size 15984
|
checkpoint-1650/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
|
| 3 |
+
size 15984
|
checkpoint-1650/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
|
| 3 |
+
size 15984
|
checkpoint-1650/rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
|
| 3 |
+
size 15984
|
checkpoint-1650/rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
|
| 3 |
+
size 15984
|
checkpoint-1650/rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
|
| 3 |
+
size 15984
|
checkpoint-1650/rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
|
| 3 |
+
size 15984
|
checkpoint-1650/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eca48213d2534f9efd883918137c187e5228038fab577926bdba008860345829
|
| 3 |
+
size 1064
|
checkpoint-1650/special_tokens_map.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": "<|im_end|>"
|
| 25 |
+
}
|
checkpoint-1650/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
checkpoint-1650/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|im_end|>",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-1650/trainer_state.json
ADDED
|
@@ -0,0 +1,2343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.537744641192917,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 1650,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.004659832246039142,
|
| 13 |
+
"grad_norm": 59.78214918326703,
|
| 14 |
+
"learning_rate": 7.763975155279503e-07,
|
| 15 |
+
"loss": 10.6865,
|
| 16 |
+
"step": 5
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.009319664492078284,
|
| 20 |
+
"grad_norm": 61.61821429517621,
|
| 21 |
+
"learning_rate": 1.5527950310559006e-06,
|
| 22 |
+
"loss": 10.4783,
|
| 23 |
+
"step": 10
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.013979496738117428,
|
| 27 |
+
"grad_norm": 100.18886340338842,
|
| 28 |
+
"learning_rate": 2.329192546583851e-06,
|
| 29 |
+
"loss": 8.8595,
|
| 30 |
+
"step": 15
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.01863932898415657,
|
| 34 |
+
"grad_norm": 28.80282471816165,
|
| 35 |
+
"learning_rate": 3.1055900621118013e-06,
|
| 36 |
+
"loss": 2.9699,
|
| 37 |
+
"step": 20
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.023299161230195712,
|
| 41 |
+
"grad_norm": 2.9469993742141027,
|
| 42 |
+
"learning_rate": 3.881987577639752e-06,
|
| 43 |
+
"loss": 1.3152,
|
| 44 |
+
"step": 25
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.027958993476234855,
|
| 48 |
+
"grad_norm": 1.273876748177396,
|
| 49 |
+
"learning_rate": 4.658385093167702e-06,
|
| 50 |
+
"loss": 0.9979,
|
| 51 |
+
"step": 30
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.032618825722273995,
|
| 55 |
+
"grad_norm": 1.1847847745298432,
|
| 56 |
+
"learning_rate": 5.4347826086956525e-06,
|
| 57 |
+
"loss": 0.8462,
|
| 58 |
+
"step": 35
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.03727865796831314,
|
| 62 |
+
"grad_norm": 0.6184161495875878,
|
| 63 |
+
"learning_rate": 6.2111801242236025e-06,
|
| 64 |
+
"loss": 0.7823,
|
| 65 |
+
"step": 40
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.04193849021435228,
|
| 69 |
+
"grad_norm": 0.4611063105597401,
|
| 70 |
+
"learning_rate": 6.9875776397515525e-06,
|
| 71 |
+
"loss": 0.7195,
|
| 72 |
+
"step": 45
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.046598322460391424,
|
| 76 |
+
"grad_norm": 0.3903179820498685,
|
| 77 |
+
"learning_rate": 7.763975155279503e-06,
|
| 78 |
+
"loss": 0.6868,
|
| 79 |
+
"step": 50
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.05125815470643057,
|
| 83 |
+
"grad_norm": 0.44815192407139737,
|
| 84 |
+
"learning_rate": 8.540372670807453e-06,
|
| 85 |
+
"loss": 0.6483,
|
| 86 |
+
"step": 55
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.05591798695246971,
|
| 90 |
+
"grad_norm": 0.3363352375310443,
|
| 91 |
+
"learning_rate": 9.316770186335403e-06,
|
| 92 |
+
"loss": 0.61,
|
| 93 |
+
"step": 60
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.06057781919850885,
|
| 97 |
+
"grad_norm": 0.31214409078055283,
|
| 98 |
+
"learning_rate": 1.0093167701863353e-05,
|
| 99 |
+
"loss": 0.5932,
|
| 100 |
+
"step": 65
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.06523765144454799,
|
| 104 |
+
"grad_norm": 0.32957450493165075,
|
| 105 |
+
"learning_rate": 1.0869565217391305e-05,
|
| 106 |
+
"loss": 0.5886,
|
| 107 |
+
"step": 70
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.06989748369058714,
|
| 111 |
+
"grad_norm": 0.3311294918877853,
|
| 112 |
+
"learning_rate": 1.1645962732919255e-05,
|
| 113 |
+
"loss": 0.5704,
|
| 114 |
+
"step": 75
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.07455731593662628,
|
| 118 |
+
"grad_norm": 0.3181163049876225,
|
| 119 |
+
"learning_rate": 1.2422360248447205e-05,
|
| 120 |
+
"loss": 0.5604,
|
| 121 |
+
"step": 80
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.07921714818266543,
|
| 125 |
+
"grad_norm": 0.3310250029185392,
|
| 126 |
+
"learning_rate": 1.3198757763975155e-05,
|
| 127 |
+
"loss": 0.5508,
|
| 128 |
+
"step": 85
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.08387698042870456,
|
| 132 |
+
"grad_norm": 0.2864578039803888,
|
| 133 |
+
"learning_rate": 1.3975155279503105e-05,
|
| 134 |
+
"loss": 0.5606,
|
| 135 |
+
"step": 90
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.08853681267474371,
|
| 139 |
+
"grad_norm": 0.2527763382663063,
|
| 140 |
+
"learning_rate": 1.4751552795031057e-05,
|
| 141 |
+
"loss": 0.542,
|
| 142 |
+
"step": 95
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.09319664492078285,
|
| 146 |
+
"grad_norm": 0.30977172064299785,
|
| 147 |
+
"learning_rate": 1.5527950310559007e-05,
|
| 148 |
+
"loss": 0.5272,
|
| 149 |
+
"step": 100
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.097856477166822,
|
| 153 |
+
"grad_norm": 0.3503262906800675,
|
| 154 |
+
"learning_rate": 1.630434782608696e-05,
|
| 155 |
+
"loss": 0.5214,
|
| 156 |
+
"step": 105
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.10251630941286113,
|
| 160 |
+
"grad_norm": 0.3032318880335728,
|
| 161 |
+
"learning_rate": 1.7080745341614907e-05,
|
| 162 |
+
"loss": 0.5229,
|
| 163 |
+
"step": 110
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.10717614165890028,
|
| 167 |
+
"grad_norm": 0.32192998759757896,
|
| 168 |
+
"learning_rate": 1.785714285714286e-05,
|
| 169 |
+
"loss": 0.5201,
|
| 170 |
+
"step": 115
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.11183597390493942,
|
| 174 |
+
"grad_norm": 0.37017049044979194,
|
| 175 |
+
"learning_rate": 1.8633540372670807e-05,
|
| 176 |
+
"loss": 0.5067,
|
| 177 |
+
"step": 120
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.11649580615097857,
|
| 181 |
+
"grad_norm": 0.27625624649694025,
|
| 182 |
+
"learning_rate": 1.940993788819876e-05,
|
| 183 |
+
"loss": 0.5026,
|
| 184 |
+
"step": 125
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.1211556383970177,
|
| 188 |
+
"grad_norm": 0.32732522406326287,
|
| 189 |
+
"learning_rate": 2.0186335403726707e-05,
|
| 190 |
+
"loss": 0.5083,
|
| 191 |
+
"step": 130
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.12581547064305684,
|
| 195 |
+
"grad_norm": 0.3974302327759709,
|
| 196 |
+
"learning_rate": 2.096273291925466e-05,
|
| 197 |
+
"loss": 0.5069,
|
| 198 |
+
"step": 135
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.13047530288909598,
|
| 202 |
+
"grad_norm": 0.49055099062465235,
|
| 203 |
+
"learning_rate": 2.173913043478261e-05,
|
| 204 |
+
"loss": 0.4918,
|
| 205 |
+
"step": 140
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.13513513513513514,
|
| 209 |
+
"grad_norm": 0.3509510737287038,
|
| 210 |
+
"learning_rate": 2.2515527950310562e-05,
|
| 211 |
+
"loss": 0.5182,
|
| 212 |
+
"step": 145
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.13979496738117428,
|
| 216 |
+
"grad_norm": 0.4060738145091598,
|
| 217 |
+
"learning_rate": 2.329192546583851e-05,
|
| 218 |
+
"loss": 0.4924,
|
| 219 |
+
"step": 150
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.14445479962721341,
|
| 223 |
+
"grad_norm": 0.42238178931670933,
|
| 224 |
+
"learning_rate": 2.4068322981366462e-05,
|
| 225 |
+
"loss": 0.5005,
|
| 226 |
+
"step": 155
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.14911463187325255,
|
| 230 |
+
"grad_norm": 0.42361270461040995,
|
| 231 |
+
"learning_rate": 2.484472049689441e-05,
|
| 232 |
+
"loss": 0.4809,
|
| 233 |
+
"step": 160
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.15377446411929171,
|
| 237 |
+
"grad_norm": 0.4419148082648927,
|
| 238 |
+
"learning_rate": 2.5621118012422362e-05,
|
| 239 |
+
"loss": 0.4922,
|
| 240 |
+
"step": 165
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.15843429636533085,
|
| 244 |
+
"grad_norm": 0.37817457175825797,
|
| 245 |
+
"learning_rate": 2.639751552795031e-05,
|
| 246 |
+
"loss": 0.4682,
|
| 247 |
+
"step": 170
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.16309412861137,
|
| 251 |
+
"grad_norm": 0.4612740179437555,
|
| 252 |
+
"learning_rate": 2.7173913043478262e-05,
|
| 253 |
+
"loss": 0.4812,
|
| 254 |
+
"step": 175
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.16775396085740912,
|
| 258 |
+
"grad_norm": 0.4027204736632852,
|
| 259 |
+
"learning_rate": 2.795031055900621e-05,
|
| 260 |
+
"loss": 0.4743,
|
| 261 |
+
"step": 180
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.1724137931034483,
|
| 265 |
+
"grad_norm": 0.3662916369622068,
|
| 266 |
+
"learning_rate": 2.8726708074534165e-05,
|
| 267 |
+
"loss": 0.4771,
|
| 268 |
+
"step": 185
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.17707362534948742,
|
| 272 |
+
"grad_norm": 0.44549022951820444,
|
| 273 |
+
"learning_rate": 2.9503105590062114e-05,
|
| 274 |
+
"loss": 0.4872,
|
| 275 |
+
"step": 190
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.18173345759552656,
|
| 279 |
+
"grad_norm": 0.4421692278535386,
|
| 280 |
+
"learning_rate": 3.0279503105590062e-05,
|
| 281 |
+
"loss": 0.4768,
|
| 282 |
+
"step": 195
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.1863932898415657,
|
| 286 |
+
"grad_norm": 0.4592171701659634,
|
| 287 |
+
"learning_rate": 3.1055900621118014e-05,
|
| 288 |
+
"loss": 0.4782,
|
| 289 |
+
"step": 200
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.19105312208760486,
|
| 293 |
+
"grad_norm": 0.5338610618981041,
|
| 294 |
+
"learning_rate": 3.183229813664597e-05,
|
| 295 |
+
"loss": 0.4677,
|
| 296 |
+
"step": 205
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.195712954333644,
|
| 300 |
+
"grad_norm": 0.679375515050287,
|
| 301 |
+
"learning_rate": 3.260869565217392e-05,
|
| 302 |
+
"loss": 0.4817,
|
| 303 |
+
"step": 210
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.20037278657968313,
|
| 307 |
+
"grad_norm": 0.5075771202954662,
|
| 308 |
+
"learning_rate": 3.3385093167701865e-05,
|
| 309 |
+
"loss": 0.4632,
|
| 310 |
+
"step": 215
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.20503261882572227,
|
| 314 |
+
"grad_norm": 0.5271972882853628,
|
| 315 |
+
"learning_rate": 3.4161490683229814e-05,
|
| 316 |
+
"loss": 0.4674,
|
| 317 |
+
"step": 220
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.2096924510717614,
|
| 321 |
+
"grad_norm": 0.45927485782401883,
|
| 322 |
+
"learning_rate": 3.493788819875777e-05,
|
| 323 |
+
"loss": 0.4496,
|
| 324 |
+
"step": 225
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.21435228331780057,
|
| 328 |
+
"grad_norm": 0.3875430276374643,
|
| 329 |
+
"learning_rate": 3.571428571428572e-05,
|
| 330 |
+
"loss": 0.4628,
|
| 331 |
+
"step": 230
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.2190121155638397,
|
| 335 |
+
"grad_norm": 0.43592470909651004,
|
| 336 |
+
"learning_rate": 3.6490683229813665e-05,
|
| 337 |
+
"loss": 0.4604,
|
| 338 |
+
"step": 235
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.22367194780987884,
|
| 342 |
+
"grad_norm": 0.45541861707423287,
|
| 343 |
+
"learning_rate": 3.7267080745341614e-05,
|
| 344 |
+
"loss": 0.4578,
|
| 345 |
+
"step": 240
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.22833178005591798,
|
| 349 |
+
"grad_norm": 0.5415802082513514,
|
| 350 |
+
"learning_rate": 3.804347826086957e-05,
|
| 351 |
+
"loss": 0.4628,
|
| 352 |
+
"step": 245
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.23299161230195714,
|
| 356 |
+
"grad_norm": 0.48756789908879733,
|
| 357 |
+
"learning_rate": 3.881987577639752e-05,
|
| 358 |
+
"loss": 0.4551,
|
| 359 |
+
"step": 250
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.23765144454799628,
|
| 363 |
+
"grad_norm": 0.48641029082339876,
|
| 364 |
+
"learning_rate": 3.9596273291925465e-05,
|
| 365 |
+
"loss": 0.4636,
|
| 366 |
+
"step": 255
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.2423112767940354,
|
| 370 |
+
"grad_norm": 0.44167537560377024,
|
| 371 |
+
"learning_rate": 4.0372670807453414e-05,
|
| 372 |
+
"loss": 0.4584,
|
| 373 |
+
"step": 260
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.24697110904007455,
|
| 377 |
+
"grad_norm": 0.49523500628083084,
|
| 378 |
+
"learning_rate": 4.114906832298137e-05,
|
| 379 |
+
"loss": 0.457,
|
| 380 |
+
"step": 265
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.2516309412861137,
|
| 384 |
+
"grad_norm": 0.46362590765498735,
|
| 385 |
+
"learning_rate": 4.192546583850932e-05,
|
| 386 |
+
"loss": 0.4553,
|
| 387 |
+
"step": 270
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.25629077353215285,
|
| 391 |
+
"grad_norm": 0.41387594745783063,
|
| 392 |
+
"learning_rate": 4.270186335403727e-05,
|
| 393 |
+
"loss": 0.4606,
|
| 394 |
+
"step": 275
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.26095060577819196,
|
| 398 |
+
"grad_norm": 0.4327868844195844,
|
| 399 |
+
"learning_rate": 4.347826086956522e-05,
|
| 400 |
+
"loss": 0.4529,
|
| 401 |
+
"step": 280
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.2656104380242311,
|
| 405 |
+
"grad_norm": 0.425878793618421,
|
| 406 |
+
"learning_rate": 4.425465838509317e-05,
|
| 407 |
+
"loss": 0.457,
|
| 408 |
+
"step": 285
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.2702702702702703,
|
| 412 |
+
"grad_norm": 0.49167640847055744,
|
| 413 |
+
"learning_rate": 4.5031055900621124e-05,
|
| 414 |
+
"loss": 0.4586,
|
| 415 |
+
"step": 290
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.2749301025163094,
|
| 419 |
+
"grad_norm": 0.6223762427590684,
|
| 420 |
+
"learning_rate": 4.580745341614907e-05,
|
| 421 |
+
"loss": 0.4627,
|
| 422 |
+
"step": 295
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.27958993476234856,
|
| 426 |
+
"grad_norm": 0.6138447122463503,
|
| 427 |
+
"learning_rate": 4.658385093167702e-05,
|
| 428 |
+
"loss": 0.4643,
|
| 429 |
+
"step": 300
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.2842497670083877,
|
| 433 |
+
"grad_norm": 0.5410077879825527,
|
| 434 |
+
"learning_rate": 4.736024844720497e-05,
|
| 435 |
+
"loss": 0.4531,
|
| 436 |
+
"step": 305
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.28890959925442683,
|
| 440 |
+
"grad_norm": 0.5248106064020833,
|
| 441 |
+
"learning_rate": 4.8136645962732924e-05,
|
| 442 |
+
"loss": 0.4453,
|
| 443 |
+
"step": 310
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.293569431500466,
|
| 447 |
+
"grad_norm": 0.4576312238038398,
|
| 448 |
+
"learning_rate": 4.891304347826087e-05,
|
| 449 |
+
"loss": 0.4531,
|
| 450 |
+
"step": 315
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.2982292637465051,
|
| 454 |
+
"grad_norm": 0.7616375740291316,
|
| 455 |
+
"learning_rate": 4.968944099378882e-05,
|
| 456 |
+
"loss": 0.4387,
|
| 457 |
+
"step": 320
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.30288909599254427,
|
| 461 |
+
"grad_norm": 0.5230246761762287,
|
| 462 |
+
"learning_rate": 4.994822229892993e-05,
|
| 463 |
+
"loss": 0.4367,
|
| 464 |
+
"step": 325
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.30754892823858343,
|
| 468 |
+
"grad_norm": 0.4333888474147187,
|
| 469 |
+
"learning_rate": 4.986192613047981e-05,
|
| 470 |
+
"loss": 0.4468,
|
| 471 |
+
"step": 330
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.31220876048462254,
|
| 475 |
+
"grad_norm": 0.6558069118015527,
|
| 476 |
+
"learning_rate": 4.977562996202969e-05,
|
| 477 |
+
"loss": 0.447,
|
| 478 |
+
"step": 335
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.3168685927306617,
|
| 482 |
+
"grad_norm": 0.4781469048268466,
|
| 483 |
+
"learning_rate": 4.968933379357957e-05,
|
| 484 |
+
"loss": 0.4487,
|
| 485 |
+
"step": 340
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.32152842497670087,
|
| 489 |
+
"grad_norm": 0.4582486158349481,
|
| 490 |
+
"learning_rate": 4.9603037625129445e-05,
|
| 491 |
+
"loss": 0.4433,
|
| 492 |
+
"step": 345
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.32618825722274,
|
| 496 |
+
"grad_norm": 0.4234664780262906,
|
| 497 |
+
"learning_rate": 4.951674145667933e-05,
|
| 498 |
+
"loss": 0.4568,
|
| 499 |
+
"step": 350
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.33084808946877914,
|
| 503 |
+
"grad_norm": 0.4766441062632173,
|
| 504 |
+
"learning_rate": 4.94304452882292e-05,
|
| 505 |
+
"loss": 0.4431,
|
| 506 |
+
"step": 355
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.33550792171481825,
|
| 510 |
+
"grad_norm": 0.5294140666427822,
|
| 511 |
+
"learning_rate": 4.934414911977908e-05,
|
| 512 |
+
"loss": 0.4405,
|
| 513 |
+
"step": 360
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.3401677539608574,
|
| 517 |
+
"grad_norm": 0.3838225157756671,
|
| 518 |
+
"learning_rate": 4.9257852951328965e-05,
|
| 519 |
+
"loss": 0.437,
|
| 520 |
+
"step": 365
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.3448275862068966,
|
| 524 |
+
"grad_norm": 0.4289011151413574,
|
| 525 |
+
"learning_rate": 4.917155678287884e-05,
|
| 526 |
+
"loss": 0.4498,
|
| 527 |
+
"step": 370
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.3494874184529357,
|
| 531 |
+
"grad_norm": 0.4739139367556648,
|
| 532 |
+
"learning_rate": 4.908526061442872e-05,
|
| 533 |
+
"loss": 0.4364,
|
| 534 |
+
"step": 375
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.35414725069897485,
|
| 538 |
+
"grad_norm": 0.6531685734098429,
|
| 539 |
+
"learning_rate": 4.89989644459786e-05,
|
| 540 |
+
"loss": 0.4507,
|
| 541 |
+
"step": 380
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.35880708294501396,
|
| 545 |
+
"grad_norm": 0.38736077721702633,
|
| 546 |
+
"learning_rate": 4.891266827752848e-05,
|
| 547 |
+
"loss": 0.4526,
|
| 548 |
+
"step": 385
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.3634669151910531,
|
| 552 |
+
"grad_norm": 0.39074723361967706,
|
| 553 |
+
"learning_rate": 4.882637210907836e-05,
|
| 554 |
+
"loss": 0.4372,
|
| 555 |
+
"step": 390
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.3681267474370923,
|
| 559 |
+
"grad_norm": 0.4998720672786241,
|
| 560 |
+
"learning_rate": 4.874007594062824e-05,
|
| 561 |
+
"loss": 0.4432,
|
| 562 |
+
"step": 395
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.3727865796831314,
|
| 566 |
+
"grad_norm": 0.41449696680501236,
|
| 567 |
+
"learning_rate": 4.865377977217811e-05,
|
| 568 |
+
"loss": 0.4284,
|
| 569 |
+
"step": 400
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.37744641192917056,
|
| 573 |
+
"grad_norm": 0.42798981510455325,
|
| 574 |
+
"learning_rate": 4.8567483603728e-05,
|
| 575 |
+
"loss": 0.4466,
|
| 576 |
+
"step": 405
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.3821062441752097,
|
| 580 |
+
"grad_norm": 0.453510571603012,
|
| 581 |
+
"learning_rate": 4.8481187435277875e-05,
|
| 582 |
+
"loss": 0.4425,
|
| 583 |
+
"step": 410
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.38676607642124883,
|
| 587 |
+
"grad_norm": 0.5613852564226437,
|
| 588 |
+
"learning_rate": 4.839489126682776e-05,
|
| 589 |
+
"loss": 0.4296,
|
| 590 |
+
"step": 415
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.391425908667288,
|
| 594 |
+
"grad_norm": 0.4991311823287778,
|
| 595 |
+
"learning_rate": 4.830859509837763e-05,
|
| 596 |
+
"loss": 0.4477,
|
| 597 |
+
"step": 420
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.3960857409133271,
|
| 601 |
+
"grad_norm": 0.41710093216407557,
|
| 602 |
+
"learning_rate": 4.822229892992751e-05,
|
| 603 |
+
"loss": 0.4451,
|
| 604 |
+
"step": 425
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.40074557315936626,
|
| 608 |
+
"grad_norm": 0.44852195468081424,
|
| 609 |
+
"learning_rate": 4.8136002761477395e-05,
|
| 610 |
+
"loss": 0.4322,
|
| 611 |
+
"step": 430
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.40540540540540543,
|
| 615 |
+
"grad_norm": 0.5873258297489329,
|
| 616 |
+
"learning_rate": 4.804970659302727e-05,
|
| 617 |
+
"loss": 0.445,
|
| 618 |
+
"step": 435
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.41006523765144454,
|
| 622 |
+
"grad_norm": 0.5301184440251494,
|
| 623 |
+
"learning_rate": 4.796341042457715e-05,
|
| 624 |
+
"loss": 0.439,
|
| 625 |
+
"step": 440
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.4147250698974837,
|
| 629 |
+
"grad_norm": 0.554152067322795,
|
| 630 |
+
"learning_rate": 4.787711425612703e-05,
|
| 631 |
+
"loss": 0.4337,
|
| 632 |
+
"step": 445
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.4193849021435228,
|
| 636 |
+
"grad_norm": 0.4875794890348032,
|
| 637 |
+
"learning_rate": 4.779081808767691e-05,
|
| 638 |
+
"loss": 0.4245,
|
| 639 |
+
"step": 450
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.424044734389562,
|
| 643 |
+
"grad_norm": 0.4690783572871423,
|
| 644 |
+
"learning_rate": 4.770452191922679e-05,
|
| 645 |
+
"loss": 0.4314,
|
| 646 |
+
"step": 455
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.42870456663560114,
|
| 650 |
+
"grad_norm": 0.3725289513240759,
|
| 651 |
+
"learning_rate": 4.761822575077667e-05,
|
| 652 |
+
"loss": 0.4283,
|
| 653 |
+
"step": 460
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.43336439888164024,
|
| 657 |
+
"grad_norm": 0.4830268598668616,
|
| 658 |
+
"learning_rate": 4.753192958232654e-05,
|
| 659 |
+
"loss": 0.4255,
|
| 660 |
+
"step": 465
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.4380242311276794,
|
| 664 |
+
"grad_norm": 0.43173494250112954,
|
| 665 |
+
"learning_rate": 4.744563341387643e-05,
|
| 666 |
+
"loss": 0.4378,
|
| 667 |
+
"step": 470
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.4426840633737186,
|
| 671 |
+
"grad_norm": 0.43237002431737065,
|
| 672 |
+
"learning_rate": 4.7359337245426306e-05,
|
| 673 |
+
"loss": 0.4277,
|
| 674 |
+
"step": 475
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.4473438956197577,
|
| 678 |
+
"grad_norm": 0.41385681702794824,
|
| 679 |
+
"learning_rate": 4.7273041076976184e-05,
|
| 680 |
+
"loss": 0.4394,
|
| 681 |
+
"step": 480
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.45200372786579684,
|
| 685 |
+
"grad_norm": 0.40157124060011173,
|
| 686 |
+
"learning_rate": 4.718674490852606e-05,
|
| 687 |
+
"loss": 0.432,
|
| 688 |
+
"step": 485
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.45666356011183595,
|
| 692 |
+
"grad_norm": 0.39938983254093463,
|
| 693 |
+
"learning_rate": 4.710044874007594e-05,
|
| 694 |
+
"loss": 0.4264,
|
| 695 |
+
"step": 490
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.4613233923578751,
|
| 699 |
+
"grad_norm": 0.39732323279012777,
|
| 700 |
+
"learning_rate": 4.7014152571625826e-05,
|
| 701 |
+
"loss": 0.4321,
|
| 702 |
+
"step": 495
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.4659832246039143,
|
| 706 |
+
"grad_norm": 0.4747358464791143,
|
| 707 |
+
"learning_rate": 4.6927856403175704e-05,
|
| 708 |
+
"loss": 0.435,
|
| 709 |
+
"step": 500
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.4706430568499534,
|
| 713 |
+
"grad_norm": 0.3698718174123855,
|
| 714 |
+
"learning_rate": 4.684156023472558e-05,
|
| 715 |
+
"loss": 0.4221,
|
| 716 |
+
"step": 505
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.47530288909599255,
|
| 720 |
+
"grad_norm": 0.4305572996344627,
|
| 721 |
+
"learning_rate": 4.675526406627546e-05,
|
| 722 |
+
"loss": 0.4303,
|
| 723 |
+
"step": 510
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.47996272134203166,
|
| 727 |
+
"grad_norm": 0.6085259797324423,
|
| 728 |
+
"learning_rate": 4.666896789782534e-05,
|
| 729 |
+
"loss": 0.4281,
|
| 730 |
+
"step": 515
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.4846225535880708,
|
| 734 |
+
"grad_norm": 0.5730318489213171,
|
| 735 |
+
"learning_rate": 4.658267172937522e-05,
|
| 736 |
+
"loss": 0.4321,
|
| 737 |
+
"step": 520
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.48928238583411,
|
| 741 |
+
"grad_norm": 0.4332245949035479,
|
| 742 |
+
"learning_rate": 4.64963755609251e-05,
|
| 743 |
+
"loss": 0.4309,
|
| 744 |
+
"step": 525
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.4939422180801491,
|
| 748 |
+
"grad_norm": 0.508102013567185,
|
| 749 |
+
"learning_rate": 4.641007939247497e-05,
|
| 750 |
+
"loss": 0.428,
|
| 751 |
+
"step": 530
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.49860205032618826,
|
| 755 |
+
"grad_norm": 0.34669842614662666,
|
| 756 |
+
"learning_rate": 4.632378322402486e-05,
|
| 757 |
+
"loss": 0.4283,
|
| 758 |
+
"step": 535
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.5032618825722274,
|
| 762 |
+
"grad_norm": 0.3889254150420956,
|
| 763 |
+
"learning_rate": 4.6237487055574736e-05,
|
| 764 |
+
"loss": 0.4178,
|
| 765 |
+
"step": 540
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.5079217148182665,
|
| 769 |
+
"grad_norm": 0.49239466237923585,
|
| 770 |
+
"learning_rate": 4.6151190887124615e-05,
|
| 771 |
+
"loss": 0.4244,
|
| 772 |
+
"step": 545
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.5125815470643057,
|
| 776 |
+
"grad_norm": 0.4397316581317278,
|
| 777 |
+
"learning_rate": 4.606489471867449e-05,
|
| 778 |
+
"loss": 0.4245,
|
| 779 |
+
"step": 550
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.5172413793103449,
|
| 783 |
+
"grad_norm": 0.3573410355093717,
|
| 784 |
+
"learning_rate": 4.597859855022437e-05,
|
| 785 |
+
"loss": 0.4192,
|
| 786 |
+
"step": 555
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.5219012115563839,
|
| 790 |
+
"grad_norm": 0.43267928489519075,
|
| 791 |
+
"learning_rate": 4.589230238177425e-05,
|
| 792 |
+
"loss": 0.4397,
|
| 793 |
+
"step": 560
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.5265610438024231,
|
| 797 |
+
"grad_norm": 0.4821719775119577,
|
| 798 |
+
"learning_rate": 4.5806006213324134e-05,
|
| 799 |
+
"loss": 0.4177,
|
| 800 |
+
"step": 565
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.5312208760484622,
|
| 804 |
+
"grad_norm": 0.5349367976109402,
|
| 805 |
+
"learning_rate": 4.5719710044874006e-05,
|
| 806 |
+
"loss": 0.4175,
|
| 807 |
+
"step": 570
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.5358807082945014,
|
| 811 |
+
"grad_norm": 0.47146780494171403,
|
| 812 |
+
"learning_rate": 4.563341387642389e-05,
|
| 813 |
+
"loss": 0.4234,
|
| 814 |
+
"step": 575
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.5405405405405406,
|
| 818 |
+
"grad_norm": 0.3724800991591985,
|
| 819 |
+
"learning_rate": 4.554711770797377e-05,
|
| 820 |
+
"loss": 0.4238,
|
| 821 |
+
"step": 580
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.5452003727865797,
|
| 825 |
+
"grad_norm": 0.46072368721402923,
|
| 826 |
+
"learning_rate": 4.546082153952365e-05,
|
| 827 |
+
"loss": 0.4209,
|
| 828 |
+
"step": 585
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.5498602050326188,
|
| 832 |
+
"grad_norm": 0.40398358486961483,
|
| 833 |
+
"learning_rate": 4.5374525371073526e-05,
|
| 834 |
+
"loss": 0.4171,
|
| 835 |
+
"step": 590
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.554520037278658,
|
| 839 |
+
"grad_norm": 0.3510727726291796,
|
| 840 |
+
"learning_rate": 4.5288229202623404e-05,
|
| 841 |
+
"loss": 0.4191,
|
| 842 |
+
"step": 595
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.5591798695246971,
|
| 846 |
+
"grad_norm": 0.38603847092047144,
|
| 847 |
+
"learning_rate": 4.520193303417328e-05,
|
| 848 |
+
"loss": 0.4194,
|
| 849 |
+
"step": 600
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.5638397017707363,
|
| 853 |
+
"grad_norm": 0.3689646251475895,
|
| 854 |
+
"learning_rate": 4.511563686572317e-05,
|
| 855 |
+
"loss": 0.4182,
|
| 856 |
+
"step": 605
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.5684995340167754,
|
| 860 |
+
"grad_norm": 0.408796996489251,
|
| 861 |
+
"learning_rate": 4.5029340697273045e-05,
|
| 862 |
+
"loss": 0.4293,
|
| 863 |
+
"step": 610
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.5731593662628145,
|
| 867 |
+
"grad_norm": 0.32130017833210983,
|
| 868 |
+
"learning_rate": 4.4943044528822923e-05,
|
| 869 |
+
"loss": 0.4159,
|
| 870 |
+
"step": 615
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.5778191985088537,
|
| 874 |
+
"grad_norm": 0.3772249822258766,
|
| 875 |
+
"learning_rate": 4.48567483603728e-05,
|
| 876 |
+
"loss": 0.4131,
|
| 877 |
+
"step": 620
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.5824790307548928,
|
| 881 |
+
"grad_norm": 0.35575898721323274,
|
| 882 |
+
"learning_rate": 4.477045219192268e-05,
|
| 883 |
+
"loss": 0.4344,
|
| 884 |
+
"step": 625
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.587138863000932,
|
| 888 |
+
"grad_norm": 0.38751558564769756,
|
| 889 |
+
"learning_rate": 4.4684156023472565e-05,
|
| 890 |
+
"loss": 0.425,
|
| 891 |
+
"step": 630
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.5917986952469712,
|
| 895 |
+
"grad_norm": 0.4663549933535284,
|
| 896 |
+
"learning_rate": 4.4597859855022436e-05,
|
| 897 |
+
"loss": 0.4296,
|
| 898 |
+
"step": 635
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.5964585274930102,
|
| 902 |
+
"grad_norm": 0.4662472899566146,
|
| 903 |
+
"learning_rate": 4.4511563686572315e-05,
|
| 904 |
+
"loss": 0.4202,
|
| 905 |
+
"step": 640
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.6011183597390494,
|
| 909 |
+
"grad_norm": 0.39559722373002326,
|
| 910 |
+
"learning_rate": 4.44252675181222e-05,
|
| 911 |
+
"loss": 0.4197,
|
| 912 |
+
"step": 645
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.6057781919850885,
|
| 916 |
+
"grad_norm": 0.4348073933035661,
|
| 917 |
+
"learning_rate": 4.433897134967208e-05,
|
| 918 |
+
"loss": 0.4284,
|
| 919 |
+
"step": 650
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.6104380242311277,
|
| 923 |
+
"grad_norm": 0.4064242144273277,
|
| 924 |
+
"learning_rate": 4.4252675181221956e-05,
|
| 925 |
+
"loss": 0.4262,
|
| 926 |
+
"step": 655
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.6150978564771669,
|
| 930 |
+
"grad_norm": 0.3413504824042106,
|
| 931 |
+
"learning_rate": 4.4166379012771834e-05,
|
| 932 |
+
"loss": 0.408,
|
| 933 |
+
"step": 660
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.6197576887232059,
|
| 937 |
+
"grad_norm": 0.4625137937805045,
|
| 938 |
+
"learning_rate": 4.408008284432171e-05,
|
| 939 |
+
"loss": 0.4091,
|
| 940 |
+
"step": 665
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.6244175209692451,
|
| 944 |
+
"grad_norm": 0.4365632325921953,
|
| 945 |
+
"learning_rate": 4.39937866758716e-05,
|
| 946 |
+
"loss": 0.4076,
|
| 947 |
+
"step": 670
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.6290773532152842,
|
| 951 |
+
"grad_norm": 0.43623665649462795,
|
| 952 |
+
"learning_rate": 4.3907490507421476e-05,
|
| 953 |
+
"loss": 0.4158,
|
| 954 |
+
"step": 675
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.6337371854613234,
|
| 958 |
+
"grad_norm": 0.4462282373794903,
|
| 959 |
+
"learning_rate": 4.382119433897135e-05,
|
| 960 |
+
"loss": 0.419,
|
| 961 |
+
"step": 680
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.6383970177073626,
|
| 965 |
+
"grad_norm": 0.4909062825850483,
|
| 966 |
+
"learning_rate": 4.373489817052123e-05,
|
| 967 |
+
"loss": 0.4284,
|
| 968 |
+
"step": 685
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.6430568499534017,
|
| 972 |
+
"grad_norm": 0.4261067060277007,
|
| 973 |
+
"learning_rate": 4.364860200207111e-05,
|
| 974 |
+
"loss": 0.4108,
|
| 975 |
+
"step": 690
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.6477166821994408,
|
| 979 |
+
"grad_norm": 0.36806589117120897,
|
| 980 |
+
"learning_rate": 4.356230583362099e-05,
|
| 981 |
+
"loss": 0.4154,
|
| 982 |
+
"step": 695
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.65237651444548,
|
| 986 |
+
"grad_norm": 0.34856157577107083,
|
| 987 |
+
"learning_rate": 4.347600966517087e-05,
|
| 988 |
+
"loss": 0.4246,
|
| 989 |
+
"step": 700
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.6570363466915191,
|
| 993 |
+
"grad_norm": 0.35691903362815613,
|
| 994 |
+
"learning_rate": 4.3389713496720745e-05,
|
| 995 |
+
"loss": 0.4178,
|
| 996 |
+
"step": 705
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.6616961789375583,
|
| 1000 |
+
"grad_norm": 0.4185903662996916,
|
| 1001 |
+
"learning_rate": 4.330341732827063e-05,
|
| 1002 |
+
"loss": 0.4184,
|
| 1003 |
+
"step": 710
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.6663560111835974,
|
| 1007 |
+
"grad_norm": 0.36798569357808036,
|
| 1008 |
+
"learning_rate": 4.321712115982051e-05,
|
| 1009 |
+
"loss": 0.4067,
|
| 1010 |
+
"step": 715
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.6710158434296365,
|
| 1014 |
+
"grad_norm": 0.3788649720605493,
|
| 1015 |
+
"learning_rate": 4.3130824991370387e-05,
|
| 1016 |
+
"loss": 0.417,
|
| 1017 |
+
"step": 720
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.6756756756756757,
|
| 1021 |
+
"grad_norm": 0.33269308559456673,
|
| 1022 |
+
"learning_rate": 4.3044528822920265e-05,
|
| 1023 |
+
"loss": 0.4158,
|
| 1024 |
+
"step": 725
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.6803355079217148,
|
| 1028 |
+
"grad_norm": 0.41281885956590714,
|
| 1029 |
+
"learning_rate": 4.295823265447014e-05,
|
| 1030 |
+
"loss": 0.4107,
|
| 1031 |
+
"step": 730
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.684995340167754,
|
| 1035 |
+
"grad_norm": 0.35535706301183545,
|
| 1036 |
+
"learning_rate": 4.287193648602002e-05,
|
| 1037 |
+
"loss": 0.4149,
|
| 1038 |
+
"step": 735
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.6896551724137931,
|
| 1042 |
+
"grad_norm": 0.3277576836962773,
|
| 1043 |
+
"learning_rate": 4.27856403175699e-05,
|
| 1044 |
+
"loss": 0.4086,
|
| 1045 |
+
"step": 740
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.6943150046598322,
|
| 1049 |
+
"grad_norm": 0.40279395134887447,
|
| 1050 |
+
"learning_rate": 4.269934414911978e-05,
|
| 1051 |
+
"loss": 0.4043,
|
| 1052 |
+
"step": 745
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.6989748369058714,
|
| 1056 |
+
"grad_norm": 0.43373381741082817,
|
| 1057 |
+
"learning_rate": 4.261304798066966e-05,
|
| 1058 |
+
"loss": 0.4089,
|
| 1059 |
+
"step": 750
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.7036346691519105,
|
| 1063 |
+
"grad_norm": 0.36906806847778895,
|
| 1064 |
+
"learning_rate": 4.252675181221954e-05,
|
| 1065 |
+
"loss": 0.4113,
|
| 1066 |
+
"step": 755
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.7082945013979497,
|
| 1070 |
+
"grad_norm": 0.41940285749229916,
|
| 1071 |
+
"learning_rate": 4.244045564376942e-05,
|
| 1072 |
+
"loss": 0.4145,
|
| 1073 |
+
"step": 760
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.7129543336439889,
|
| 1077 |
+
"grad_norm": 0.35669549672804485,
|
| 1078 |
+
"learning_rate": 4.23541594753193e-05,
|
| 1079 |
+
"loss": 0.3988,
|
| 1080 |
+
"step": 765
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.7176141658900279,
|
| 1084 |
+
"grad_norm": 0.3590318963506859,
|
| 1085 |
+
"learning_rate": 4.2267863306869176e-05,
|
| 1086 |
+
"loss": 0.4075,
|
| 1087 |
+
"step": 770
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 0.7222739981360671,
|
| 1091 |
+
"grad_norm": 0.40077547109104333,
|
| 1092 |
+
"learning_rate": 4.2181567138419054e-05,
|
| 1093 |
+
"loss": 0.4202,
|
| 1094 |
+
"step": 775
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.7269338303821062,
|
| 1098 |
+
"grad_norm": 0.37047082422653643,
|
| 1099 |
+
"learning_rate": 4.209527096996894e-05,
|
| 1100 |
+
"loss": 0.4049,
|
| 1101 |
+
"step": 780
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.7315936626281454,
|
| 1105 |
+
"grad_norm": 0.3795501401345936,
|
| 1106 |
+
"learning_rate": 4.200897480151881e-05,
|
| 1107 |
+
"loss": 0.4121,
|
| 1108 |
+
"step": 785
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.7362534948741846,
|
| 1112 |
+
"grad_norm": 0.4503984514039821,
|
| 1113 |
+
"learning_rate": 4.1922678633068695e-05,
|
| 1114 |
+
"loss": 0.4152,
|
| 1115 |
+
"step": 790
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 0.7409133271202236,
|
| 1119 |
+
"grad_norm": 0.44284905780951017,
|
| 1120 |
+
"learning_rate": 4.1836382464618573e-05,
|
| 1121 |
+
"loss": 0.4098,
|
| 1122 |
+
"step": 795
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.7455731593662628,
|
| 1126 |
+
"grad_norm": 0.44691031160954076,
|
| 1127 |
+
"learning_rate": 4.175008629616845e-05,
|
| 1128 |
+
"loss": 0.4078,
|
| 1129 |
+
"step": 800
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 0.750232991612302,
|
| 1133 |
+
"grad_norm": 0.3735786310769167,
|
| 1134 |
+
"learning_rate": 4.166379012771833e-05,
|
| 1135 |
+
"loss": 0.4077,
|
| 1136 |
+
"step": 805
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 0.7548928238583411,
|
| 1140 |
+
"grad_norm": 0.3384286028508436,
|
| 1141 |
+
"learning_rate": 4.157749395926821e-05,
|
| 1142 |
+
"loss": 0.4257,
|
| 1143 |
+
"step": 810
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.7595526561043803,
|
| 1147 |
+
"grad_norm": 0.38501244831095327,
|
| 1148 |
+
"learning_rate": 4.1491197790818086e-05,
|
| 1149 |
+
"loss": 0.4005,
|
| 1150 |
+
"step": 815
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 0.7642124883504194,
|
| 1154 |
+
"grad_norm": 0.6658921381907594,
|
| 1155 |
+
"learning_rate": 4.140490162236797e-05,
|
| 1156 |
+
"loss": 0.4152,
|
| 1157 |
+
"step": 820
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 0.7688723205964585,
|
| 1161 |
+
"grad_norm": 0.5108682931365331,
|
| 1162 |
+
"learning_rate": 4.131860545391785e-05,
|
| 1163 |
+
"loss": 0.4078,
|
| 1164 |
+
"step": 825
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 0.7735321528424977,
|
| 1168 |
+
"grad_norm": 0.3959267206623357,
|
| 1169 |
+
"learning_rate": 4.123230928546773e-05,
|
| 1170 |
+
"loss": 0.4025,
|
| 1171 |
+
"step": 830
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 0.7781919850885368,
|
| 1175 |
+
"grad_norm": 0.40541297925684416,
|
| 1176 |
+
"learning_rate": 4.1146013117017606e-05,
|
| 1177 |
+
"loss": 0.4095,
|
| 1178 |
+
"step": 835
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.782851817334576,
|
| 1182 |
+
"grad_norm": 0.4483501398906087,
|
| 1183 |
+
"learning_rate": 4.1059716948567484e-05,
|
| 1184 |
+
"loss": 0.4127,
|
| 1185 |
+
"step": 840
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.7875116495806151,
|
| 1189 |
+
"grad_norm": 0.4577963072705479,
|
| 1190 |
+
"learning_rate": 4.097342078011737e-05,
|
| 1191 |
+
"loss": 0.4204,
|
| 1192 |
+
"step": 845
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.7921714818266542,
|
| 1196 |
+
"grad_norm": 0.3657002203284406,
|
| 1197 |
+
"learning_rate": 4.088712461166724e-05,
|
| 1198 |
+
"loss": 0.4105,
|
| 1199 |
+
"step": 850
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 0.7968313140726934,
|
| 1203 |
+
"grad_norm": 0.5219753962445839,
|
| 1204 |
+
"learning_rate": 4.080082844321712e-05,
|
| 1205 |
+
"loss": 0.4121,
|
| 1206 |
+
"step": 855
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 0.8014911463187325,
|
| 1210 |
+
"grad_norm": 0.4051529596962449,
|
| 1211 |
+
"learning_rate": 4.0714532274767004e-05,
|
| 1212 |
+
"loss": 0.4189,
|
| 1213 |
+
"step": 860
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"epoch": 0.8061509785647717,
|
| 1217 |
+
"grad_norm": 0.3645428936825488,
|
| 1218 |
+
"learning_rate": 4.062823610631688e-05,
|
| 1219 |
+
"loss": 0.4003,
|
| 1220 |
+
"step": 865
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 0.8108108108108109,
|
| 1224 |
+
"grad_norm": 0.31752471962451867,
|
| 1225 |
+
"learning_rate": 4.054193993786676e-05,
|
| 1226 |
+
"loss": 0.415,
|
| 1227 |
+
"step": 870
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 0.8154706430568499,
|
| 1231 |
+
"grad_norm": 0.3601862957329616,
|
| 1232 |
+
"learning_rate": 4.045564376941664e-05,
|
| 1233 |
+
"loss": 0.4112,
|
| 1234 |
+
"step": 875
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 0.8201304753028891,
|
| 1238 |
+
"grad_norm": 0.36233941550256943,
|
| 1239 |
+
"learning_rate": 4.036934760096652e-05,
|
| 1240 |
+
"loss": 0.4027,
|
| 1241 |
+
"step": 880
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 0.8247903075489282,
|
| 1245 |
+
"grad_norm": 0.41290807812840935,
|
| 1246 |
+
"learning_rate": 4.02830514325164e-05,
|
| 1247 |
+
"loss": 0.4159,
|
| 1248 |
+
"step": 885
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 0.8294501397949674,
|
| 1252 |
+
"grad_norm": 0.42156370600929094,
|
| 1253 |
+
"learning_rate": 4.019675526406628e-05,
|
| 1254 |
+
"loss": 0.4026,
|
| 1255 |
+
"step": 890
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"epoch": 0.8341099720410066,
|
| 1259 |
+
"grad_norm": 0.369144224526896,
|
| 1260 |
+
"learning_rate": 4.011045909561615e-05,
|
| 1261 |
+
"loss": 0.4216,
|
| 1262 |
+
"step": 895
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 0.8387698042870456,
|
| 1266 |
+
"grad_norm": 0.35301766518057,
|
| 1267 |
+
"learning_rate": 4.0024162927166037e-05,
|
| 1268 |
+
"loss": 0.4047,
|
| 1269 |
+
"step": 900
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.8434296365330848,
|
| 1273 |
+
"grad_norm": 0.30727777017232927,
|
| 1274 |
+
"learning_rate": 3.9937866758715915e-05,
|
| 1275 |
+
"loss": 0.4061,
|
| 1276 |
+
"step": 905
|
| 1277 |
+
},
|
| 1278 |
+
{
|
| 1279 |
+
"epoch": 0.848089468779124,
|
| 1280 |
+
"grad_norm": 0.4595118441196378,
|
| 1281 |
+
"learning_rate": 3.98515705902658e-05,
|
| 1282 |
+
"loss": 0.4121,
|
| 1283 |
+
"step": 910
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 0.8527493010251631,
|
| 1287 |
+
"grad_norm": 0.5868283893854741,
|
| 1288 |
+
"learning_rate": 3.976527442181567e-05,
|
| 1289 |
+
"loss": 0.4051,
|
| 1290 |
+
"step": 915
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.8574091332712023,
|
| 1294 |
+
"grad_norm": 0.4408220457405354,
|
| 1295 |
+
"learning_rate": 3.967897825336555e-05,
|
| 1296 |
+
"loss": 0.4113,
|
| 1297 |
+
"step": 920
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"epoch": 0.8620689655172413,
|
| 1301 |
+
"grad_norm": 0.329430445296284,
|
| 1302 |
+
"learning_rate": 3.9592682084915434e-05,
|
| 1303 |
+
"loss": 0.398,
|
| 1304 |
+
"step": 925
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 0.8667287977632805,
|
| 1308 |
+
"grad_norm": 0.4772951342481958,
|
| 1309 |
+
"learning_rate": 3.950638591646531e-05,
|
| 1310 |
+
"loss": 0.398,
|
| 1311 |
+
"step": 930
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 0.8713886300093197,
|
| 1315 |
+
"grad_norm": 0.39009508489962785,
|
| 1316 |
+
"learning_rate": 3.942008974801519e-05,
|
| 1317 |
+
"loss": 0.4091,
|
| 1318 |
+
"step": 935
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"epoch": 0.8760484622553588,
|
| 1322 |
+
"grad_norm": 0.31283951592729364,
|
| 1323 |
+
"learning_rate": 3.933379357956507e-05,
|
| 1324 |
+
"loss": 0.4051,
|
| 1325 |
+
"step": 940
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 0.880708294501398,
|
| 1329 |
+
"grad_norm": 0.38362272885626797,
|
| 1330 |
+
"learning_rate": 3.924749741111495e-05,
|
| 1331 |
+
"loss": 0.4072,
|
| 1332 |
+
"step": 945
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 0.8853681267474371,
|
| 1336 |
+
"grad_norm": 0.4294812901025146,
|
| 1337 |
+
"learning_rate": 3.916120124266483e-05,
|
| 1338 |
+
"loss": 0.4148,
|
| 1339 |
+
"step": 950
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"epoch": 0.8900279589934762,
|
| 1343 |
+
"grad_norm": 0.4001848027163216,
|
| 1344 |
+
"learning_rate": 3.9074905074214704e-05,
|
| 1345 |
+
"loss": 0.4136,
|
| 1346 |
+
"step": 955
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 0.8946877912395154,
|
| 1350 |
+
"grad_norm": 0.34026388057585993,
|
| 1351 |
+
"learning_rate": 3.898860890576458e-05,
|
| 1352 |
+
"loss": 0.4093,
|
| 1353 |
+
"step": 960
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.8993476234855545,
|
| 1357 |
+
"grad_norm": 0.40668203338539827,
|
| 1358 |
+
"learning_rate": 3.890231273731447e-05,
|
| 1359 |
+
"loss": 0.4008,
|
| 1360 |
+
"step": 965
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 0.9040074557315937,
|
| 1364 |
+
"grad_norm": 0.3294333705662259,
|
| 1365 |
+
"learning_rate": 3.8816016568864345e-05,
|
| 1366 |
+
"loss": 0.3987,
|
| 1367 |
+
"step": 970
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 0.9086672879776329,
|
| 1371 |
+
"grad_norm": 0.342795942254618,
|
| 1372 |
+
"learning_rate": 3.8729720400414224e-05,
|
| 1373 |
+
"loss": 0.4176,
|
| 1374 |
+
"step": 975
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.9133271202236719,
|
| 1378 |
+
"grad_norm": 0.39628105185451024,
|
| 1379 |
+
"learning_rate": 3.86434242319641e-05,
|
| 1380 |
+
"loss": 0.4047,
|
| 1381 |
+
"step": 980
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 0.9179869524697111,
|
| 1385 |
+
"grad_norm": 0.46631619804138,
|
| 1386 |
+
"learning_rate": 3.855712806351398e-05,
|
| 1387 |
+
"loss": 0.4068,
|
| 1388 |
+
"step": 985
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 0.9226467847157502,
|
| 1392 |
+
"grad_norm": 0.43261058596610696,
|
| 1393 |
+
"learning_rate": 3.8470831895063865e-05,
|
| 1394 |
+
"loss": 0.4038,
|
| 1395 |
+
"step": 990
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.9273066169617894,
|
| 1399 |
+
"grad_norm": 0.37541980348762116,
|
| 1400 |
+
"learning_rate": 3.838453572661374e-05,
|
| 1401 |
+
"loss": 0.3995,
|
| 1402 |
+
"step": 995
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.9319664492078286,
|
| 1406 |
+
"grad_norm": 0.4184847694680633,
|
| 1407 |
+
"learning_rate": 3.8298239558163615e-05,
|
| 1408 |
+
"loss": 0.4025,
|
| 1409 |
+
"step": 1000
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"epoch": 0.9366262814538676,
|
| 1413 |
+
"grad_norm": 0.3857591059837171,
|
| 1414 |
+
"learning_rate": 3.82119433897135e-05,
|
| 1415 |
+
"loss": 0.4075,
|
| 1416 |
+
"step": 1005
|
| 1417 |
+
},
|
| 1418 |
+
{
|
| 1419 |
+
"epoch": 0.9412861136999068,
|
| 1420 |
+
"grad_norm": 0.39800461331863696,
|
| 1421 |
+
"learning_rate": 3.812564722126338e-05,
|
| 1422 |
+
"loss": 0.4,
|
| 1423 |
+
"step": 1010
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"epoch": 0.9459459459459459,
|
| 1427 |
+
"grad_norm": 0.4143464836173206,
|
| 1428 |
+
"learning_rate": 3.8039351052813256e-05,
|
| 1429 |
+
"loss": 0.4083,
|
| 1430 |
+
"step": 1015
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 0.9506057781919851,
|
| 1434 |
+
"grad_norm": 0.3920202302045243,
|
| 1435 |
+
"learning_rate": 3.7953054884363134e-05,
|
| 1436 |
+
"loss": 0.4023,
|
| 1437 |
+
"step": 1020
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 0.9552656104380243,
|
| 1441 |
+
"grad_norm": 0.37828355875661107,
|
| 1442 |
+
"learning_rate": 3.786675871591301e-05,
|
| 1443 |
+
"loss": 0.4056,
|
| 1444 |
+
"step": 1025
|
| 1445 |
+
},
|
| 1446 |
+
{
|
| 1447 |
+
"epoch": 0.9599254426840633,
|
| 1448 |
+
"grad_norm": 0.29419352669408066,
|
| 1449 |
+
"learning_rate": 3.77804625474629e-05,
|
| 1450 |
+
"loss": 0.4107,
|
| 1451 |
+
"step": 1030
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"epoch": 0.9645852749301025,
|
| 1455 |
+
"grad_norm": 0.3997612657539297,
|
| 1456 |
+
"learning_rate": 3.7694166379012776e-05,
|
| 1457 |
+
"loss": 0.4031,
|
| 1458 |
+
"step": 1035
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 0.9692451071761417,
|
| 1462 |
+
"grad_norm": 0.38608182016741566,
|
| 1463 |
+
"learning_rate": 3.7607870210562654e-05,
|
| 1464 |
+
"loss": 0.4005,
|
| 1465 |
+
"step": 1040
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"epoch": 0.9739049394221808,
|
| 1469 |
+
"grad_norm": 0.28600031302754375,
|
| 1470 |
+
"learning_rate": 3.752157404211253e-05,
|
| 1471 |
+
"loss": 0.3933,
|
| 1472 |
+
"step": 1045
|
| 1473 |
+
},
|
| 1474 |
+
{
|
| 1475 |
+
"epoch": 0.97856477166822,
|
| 1476 |
+
"grad_norm": 0.38107411335734614,
|
| 1477 |
+
"learning_rate": 3.743527787366241e-05,
|
| 1478 |
+
"loss": 0.4225,
|
| 1479 |
+
"step": 1050
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 0.983224603914259,
|
| 1483 |
+
"grad_norm": 0.39170807411989667,
|
| 1484 |
+
"learning_rate": 3.734898170521229e-05,
|
| 1485 |
+
"loss": 0.4004,
|
| 1486 |
+
"step": 1055
|
| 1487 |
+
},
|
| 1488 |
+
{
|
| 1489 |
+
"epoch": 0.9878844361602982,
|
| 1490 |
+
"grad_norm": 0.38467780448535566,
|
| 1491 |
+
"learning_rate": 3.7262685536762174e-05,
|
| 1492 |
+
"loss": 0.3997,
|
| 1493 |
+
"step": 1060
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"epoch": 0.9925442684063374,
|
| 1497 |
+
"grad_norm": 0.4020140968286371,
|
| 1498 |
+
"learning_rate": 3.7176389368312045e-05,
|
| 1499 |
+
"loss": 0.4037,
|
| 1500 |
+
"step": 1065
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 0.9972041006523765,
|
| 1504 |
+
"grad_norm": 0.46309836470033766,
|
| 1505 |
+
"learning_rate": 3.709009319986193e-05,
|
| 1506 |
+
"loss": 0.4041,
|
| 1507 |
+
"step": 1070
|
| 1508 |
+
},
|
| 1509 |
+
{
|
| 1510 |
+
"epoch": 1.0018639328984156,
|
| 1511 |
+
"grad_norm": 0.3901703886810142,
|
| 1512 |
+
"learning_rate": 3.700379703141181e-05,
|
| 1513 |
+
"loss": 0.369,
|
| 1514 |
+
"step": 1075
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 1.0065237651444547,
|
| 1518 |
+
"grad_norm": 0.3010234352246036,
|
| 1519 |
+
"learning_rate": 3.6917500862961687e-05,
|
| 1520 |
+
"loss": 0.3448,
|
| 1521 |
+
"step": 1080
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 1.011183597390494,
|
| 1525 |
+
"grad_norm": 0.4157638937857459,
|
| 1526 |
+
"learning_rate": 3.6831204694511565e-05,
|
| 1527 |
+
"loss": 0.3518,
|
| 1528 |
+
"step": 1085
|
| 1529 |
+
},
|
| 1530 |
+
{
|
| 1531 |
+
"epoch": 1.015843429636533,
|
| 1532 |
+
"grad_norm": 0.3603522336344581,
|
| 1533 |
+
"learning_rate": 3.674490852606144e-05,
|
| 1534 |
+
"loss": 0.3586,
|
| 1535 |
+
"step": 1090
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"epoch": 1.0205032618825722,
|
| 1539 |
+
"grad_norm": 0.32822298799590405,
|
| 1540 |
+
"learning_rate": 3.665861235761132e-05,
|
| 1541 |
+
"loss": 0.3447,
|
| 1542 |
+
"step": 1095
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 1.0251630941286114,
|
| 1546 |
+
"grad_norm": 0.35038116243974443,
|
| 1547 |
+
"learning_rate": 3.6572316189161206e-05,
|
| 1548 |
+
"loss": 0.337,
|
| 1549 |
+
"step": 1100
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"epoch": 1.0298229263746506,
|
| 1553 |
+
"grad_norm": 0.2841436076230565,
|
| 1554 |
+
"learning_rate": 3.6486020020711085e-05,
|
| 1555 |
+
"loss": 0.343,
|
| 1556 |
+
"step": 1105
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 1.0344827586206897,
|
| 1560 |
+
"grad_norm": 0.3116345416367525,
|
| 1561 |
+
"learning_rate": 3.639972385226096e-05,
|
| 1562 |
+
"loss": 0.3432,
|
| 1563 |
+
"step": 1110
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 1.0391425908667289,
|
| 1567 |
+
"grad_norm": 0.3151855230791428,
|
| 1568 |
+
"learning_rate": 3.631342768381084e-05,
|
| 1569 |
+
"loss": 0.3431,
|
| 1570 |
+
"step": 1115
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 1.0438024231127678,
|
| 1574 |
+
"grad_norm": 0.35993766510002373,
|
| 1575 |
+
"learning_rate": 3.622713151536072e-05,
|
| 1576 |
+
"loss": 0.343,
|
| 1577 |
+
"step": 1120
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 1.048462255358807,
|
| 1581 |
+
"grad_norm": 0.32743934813623815,
|
| 1582 |
+
"learning_rate": 3.6140835346910604e-05,
|
| 1583 |
+
"loss": 0.347,
|
| 1584 |
+
"step": 1125
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 1.0531220876048462,
|
| 1588 |
+
"grad_norm": 0.3000370756870265,
|
| 1589 |
+
"learning_rate": 3.6054539178460476e-05,
|
| 1590 |
+
"loss": 0.3433,
|
| 1591 |
+
"step": 1130
|
| 1592 |
+
},
|
| 1593 |
+
{
|
| 1594 |
+
"epoch": 1.0577819198508853,
|
| 1595 |
+
"grad_norm": 0.38781790959885876,
|
| 1596 |
+
"learning_rate": 3.5968243010010354e-05,
|
| 1597 |
+
"loss": 0.3594,
|
| 1598 |
+
"step": 1135
|
| 1599 |
+
},
|
| 1600 |
+
{
|
| 1601 |
+
"epoch": 1.0624417520969245,
|
| 1602 |
+
"grad_norm": 0.32014554787819977,
|
| 1603 |
+
"learning_rate": 3.588194684156024e-05,
|
| 1604 |
+
"loss": 0.3503,
|
| 1605 |
+
"step": 1140
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 1.0671015843429636,
|
| 1609 |
+
"grad_norm": 0.370735809498283,
|
| 1610 |
+
"learning_rate": 3.579565067311012e-05,
|
| 1611 |
+
"loss": 0.3417,
|
| 1612 |
+
"step": 1145
|
| 1613 |
+
},
|
| 1614 |
+
{
|
| 1615 |
+
"epoch": 1.0717614165890028,
|
| 1616 |
+
"grad_norm": 0.3024601758163409,
|
| 1617 |
+
"learning_rate": 3.5709354504659995e-05,
|
| 1618 |
+
"loss": 0.3385,
|
| 1619 |
+
"step": 1150
|
| 1620 |
+
},
|
| 1621 |
+
{
|
| 1622 |
+
"epoch": 1.076421248835042,
|
| 1623 |
+
"grad_norm": 0.3396899881369013,
|
| 1624 |
+
"learning_rate": 3.5623058336209874e-05,
|
| 1625 |
+
"loss": 0.3496,
|
| 1626 |
+
"step": 1155
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"epoch": 1.0810810810810811,
|
| 1630 |
+
"grad_norm": 0.28870357807743696,
|
| 1631 |
+
"learning_rate": 3.553676216775975e-05,
|
| 1632 |
+
"loss": 0.3406,
|
| 1633 |
+
"step": 1160
|
| 1634 |
+
},
|
| 1635 |
+
{
|
| 1636 |
+
"epoch": 1.0857409133271203,
|
| 1637 |
+
"grad_norm": 0.28568156626690694,
|
| 1638 |
+
"learning_rate": 3.545046599930964e-05,
|
| 1639 |
+
"loss": 0.3523,
|
| 1640 |
+
"step": 1165
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 1.0904007455731595,
|
| 1644 |
+
"grad_norm": 0.27294319365310815,
|
| 1645 |
+
"learning_rate": 3.536416983085951e-05,
|
| 1646 |
+
"loss": 0.3537,
|
| 1647 |
+
"step": 1170
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 1.0950605778191984,
|
| 1651 |
+
"grad_norm": 0.36694769383304165,
|
| 1652 |
+
"learning_rate": 3.5277873662409386e-05,
|
| 1653 |
+
"loss": 0.3403,
|
| 1654 |
+
"step": 1175
|
| 1655 |
+
},
|
| 1656 |
+
{
|
| 1657 |
+
"epoch": 1.0997204100652376,
|
| 1658 |
+
"grad_norm": 0.33630445896051475,
|
| 1659 |
+
"learning_rate": 3.519157749395927e-05,
|
| 1660 |
+
"loss": 0.3465,
|
| 1661 |
+
"step": 1180
|
| 1662 |
+
},
|
| 1663 |
+
{
|
| 1664 |
+
"epoch": 1.1043802423112767,
|
| 1665 |
+
"grad_norm": 0.4121586071124287,
|
| 1666 |
+
"learning_rate": 3.510528132550915e-05,
|
| 1667 |
+
"loss": 0.3436,
|
| 1668 |
+
"step": 1185
|
| 1669 |
+
},
|
| 1670 |
+
{
|
| 1671 |
+
"epoch": 1.109040074557316,
|
| 1672 |
+
"grad_norm": 0.3107462600176289,
|
| 1673 |
+
"learning_rate": 3.501898515705903e-05,
|
| 1674 |
+
"loss": 0.3455,
|
| 1675 |
+
"step": 1190
|
| 1676 |
+
},
|
| 1677 |
+
{
|
| 1678 |
+
"epoch": 1.113699906803355,
|
| 1679 |
+
"grad_norm": 0.32616980094028847,
|
| 1680 |
+
"learning_rate": 3.4932688988608906e-05,
|
| 1681 |
+
"loss": 0.3569,
|
| 1682 |
+
"step": 1195
|
| 1683 |
+
},
|
| 1684 |
+
{
|
| 1685 |
+
"epoch": 1.1183597390493942,
|
| 1686 |
+
"grad_norm": 0.5721259222478717,
|
| 1687 |
+
"learning_rate": 3.4846392820158784e-05,
|
| 1688 |
+
"loss": 0.3462,
|
| 1689 |
+
"step": 1200
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 1.1230195712954334,
|
| 1693 |
+
"grad_norm": 0.39091963037590294,
|
| 1694 |
+
"learning_rate": 3.476009665170867e-05,
|
| 1695 |
+
"loss": 0.3458,
|
| 1696 |
+
"step": 1205
|
| 1697 |
+
},
|
| 1698 |
+
{
|
| 1699 |
+
"epoch": 1.1276794035414726,
|
| 1700 |
+
"grad_norm": 0.3647869778433765,
|
| 1701 |
+
"learning_rate": 3.467380048325855e-05,
|
| 1702 |
+
"loss": 0.3463,
|
| 1703 |
+
"step": 1210
|
| 1704 |
+
},
|
| 1705 |
+
{
|
| 1706 |
+
"epoch": 1.1323392357875117,
|
| 1707 |
+
"grad_norm": 0.3278226928089527,
|
| 1708 |
+
"learning_rate": 3.458750431480842e-05,
|
| 1709 |
+
"loss": 0.3511,
|
| 1710 |
+
"step": 1215
|
| 1711 |
+
},
|
| 1712 |
+
{
|
| 1713 |
+
"epoch": 1.1369990680335509,
|
| 1714 |
+
"grad_norm": 0.36472407535793705,
|
| 1715 |
+
"learning_rate": 3.4501208146358304e-05,
|
| 1716 |
+
"loss": 0.3507,
|
| 1717 |
+
"step": 1220
|
| 1718 |
+
},
|
| 1719 |
+
{
|
| 1720 |
+
"epoch": 1.14165890027959,
|
| 1721 |
+
"grad_norm": 0.3162625401383028,
|
| 1722 |
+
"learning_rate": 3.441491197790818e-05,
|
| 1723 |
+
"loss": 0.3465,
|
| 1724 |
+
"step": 1225
|
| 1725 |
+
},
|
| 1726 |
+
{
|
| 1727 |
+
"epoch": 1.146318732525629,
|
| 1728 |
+
"grad_norm": 0.2935130903926503,
|
| 1729 |
+
"learning_rate": 3.432861580945806e-05,
|
| 1730 |
+
"loss": 0.3474,
|
| 1731 |
+
"step": 1230
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"epoch": 1.1509785647716682,
|
| 1735 |
+
"grad_norm": 0.34052282866497324,
|
| 1736 |
+
"learning_rate": 3.424231964100794e-05,
|
| 1737 |
+
"loss": 0.3463,
|
| 1738 |
+
"step": 1235
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"epoch": 1.1556383970177073,
|
| 1742 |
+
"grad_norm": 0.36877838244359007,
|
| 1743 |
+
"learning_rate": 3.415602347255782e-05,
|
| 1744 |
+
"loss": 0.3453,
|
| 1745 |
+
"step": 1240
|
| 1746 |
+
},
|
| 1747 |
+
{
|
| 1748 |
+
"epoch": 1.1602982292637465,
|
| 1749 |
+
"grad_norm": 0.2733712910566977,
|
| 1750 |
+
"learning_rate": 3.40697273041077e-05,
|
| 1751 |
+
"loss": 0.3519,
|
| 1752 |
+
"step": 1245
|
| 1753 |
+
},
|
| 1754 |
+
{
|
| 1755 |
+
"epoch": 1.1649580615097856,
|
| 1756 |
+
"grad_norm": 0.37390448821752814,
|
| 1757 |
+
"learning_rate": 3.398343113565758e-05,
|
| 1758 |
+
"loss": 0.3457,
|
| 1759 |
+
"step": 1250
|
| 1760 |
+
},
|
| 1761 |
+
{
|
| 1762 |
+
"epoch": 1.1696178937558248,
|
| 1763 |
+
"grad_norm": 0.2862398262715606,
|
| 1764 |
+
"learning_rate": 3.389713496720746e-05,
|
| 1765 |
+
"loss": 0.3254,
|
| 1766 |
+
"step": 1255
|
| 1767 |
+
},
|
| 1768 |
+
{
|
| 1769 |
+
"epoch": 1.174277726001864,
|
| 1770 |
+
"grad_norm": 0.27627811665115726,
|
| 1771 |
+
"learning_rate": 3.381083879875734e-05,
|
| 1772 |
+
"loss": 0.3449,
|
| 1773 |
+
"step": 1260
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"epoch": 1.1789375582479031,
|
| 1777 |
+
"grad_norm": 0.2984551216682011,
|
| 1778 |
+
"learning_rate": 3.3724542630307215e-05,
|
| 1779 |
+
"loss": 0.3412,
|
| 1780 |
+
"step": 1265
|
| 1781 |
+
},
|
| 1782 |
+
{
|
| 1783 |
+
"epoch": 1.1835973904939423,
|
| 1784 |
+
"grad_norm": 0.3117052887160424,
|
| 1785 |
+
"learning_rate": 3.363824646185709e-05,
|
| 1786 |
+
"loss": 0.3501,
|
| 1787 |
+
"step": 1270
|
| 1788 |
+
},
|
| 1789 |
+
{
|
| 1790 |
+
"epoch": 1.1882572227399812,
|
| 1791 |
+
"grad_norm": 0.26523368148938603,
|
| 1792 |
+
"learning_rate": 3.355195029340698e-05,
|
| 1793 |
+
"loss": 0.3443,
|
| 1794 |
+
"step": 1275
|
| 1795 |
+
},
|
| 1796 |
+
{
|
| 1797 |
+
"epoch": 1.1929170549860204,
|
| 1798 |
+
"grad_norm": 0.3235527702018126,
|
| 1799 |
+
"learning_rate": 3.346565412495685e-05,
|
| 1800 |
+
"loss": 0.3544,
|
| 1801 |
+
"step": 1280
|
| 1802 |
+
},
|
| 1803 |
+
{
|
| 1804 |
+
"epoch": 1.1975768872320596,
|
| 1805 |
+
"grad_norm": 0.33231065381424213,
|
| 1806 |
+
"learning_rate": 3.3379357956506735e-05,
|
| 1807 |
+
"loss": 0.3557,
|
| 1808 |
+
"step": 1285
|
| 1809 |
+
},
|
| 1810 |
+
{
|
| 1811 |
+
"epoch": 1.2022367194780987,
|
| 1812 |
+
"grad_norm": 0.33109896147037454,
|
| 1813 |
+
"learning_rate": 3.329306178805661e-05,
|
| 1814 |
+
"loss": 0.3391,
|
| 1815 |
+
"step": 1290
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"epoch": 1.206896551724138,
|
| 1819 |
+
"grad_norm": 0.29911644384621444,
|
| 1820 |
+
"learning_rate": 3.320676561960649e-05,
|
| 1821 |
+
"loss": 0.3439,
|
| 1822 |
+
"step": 1295
|
| 1823 |
+
},
|
| 1824 |
+
{
|
| 1825 |
+
"epoch": 1.211556383970177,
|
| 1826 |
+
"grad_norm": 0.4166015301847235,
|
| 1827 |
+
"learning_rate": 3.312046945115637e-05,
|
| 1828 |
+
"loss": 0.352,
|
| 1829 |
+
"step": 1300
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"epoch": 1.2162162162162162,
|
| 1833 |
+
"grad_norm": 0.40766415919978594,
|
| 1834 |
+
"learning_rate": 3.303417328270625e-05,
|
| 1835 |
+
"loss": 0.3509,
|
| 1836 |
+
"step": 1305
|
| 1837 |
+
},
|
| 1838 |
+
{
|
| 1839 |
+
"epoch": 1.2208760484622554,
|
| 1840 |
+
"grad_norm": 0.32382906649763094,
|
| 1841 |
+
"learning_rate": 3.2947877114256126e-05,
|
| 1842 |
+
"loss": 0.34,
|
| 1843 |
+
"step": 1310
|
| 1844 |
+
},
|
| 1845 |
+
{
|
| 1846 |
+
"epoch": 1.2255358807082946,
|
| 1847 |
+
"grad_norm": 0.30767189965326197,
|
| 1848 |
+
"learning_rate": 3.286158094580601e-05,
|
| 1849 |
+
"loss": 0.3602,
|
| 1850 |
+
"step": 1315
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 1.2301957129543337,
|
| 1854 |
+
"grad_norm": 0.31880798888411954,
|
| 1855 |
+
"learning_rate": 3.277528477735589e-05,
|
| 1856 |
+
"loss": 0.3458,
|
| 1857 |
+
"step": 1320
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"epoch": 1.2348555452003729,
|
| 1861 |
+
"grad_norm": 0.31313877181562205,
|
| 1862 |
+
"learning_rate": 3.268898860890577e-05,
|
| 1863 |
+
"loss": 0.3526,
|
| 1864 |
+
"step": 1325
|
| 1865 |
+
},
|
| 1866 |
+
{
|
| 1867 |
+
"epoch": 1.2395153774464118,
|
| 1868 |
+
"grad_norm": 0.2890512077214384,
|
| 1869 |
+
"learning_rate": 3.2602692440455645e-05,
|
| 1870 |
+
"loss": 0.3408,
|
| 1871 |
+
"step": 1330
|
| 1872 |
+
},
|
| 1873 |
+
{
|
| 1874 |
+
"epoch": 1.244175209692451,
|
| 1875 |
+
"grad_norm": 0.2836812272018177,
|
| 1876 |
+
"learning_rate": 3.2516396272005524e-05,
|
| 1877 |
+
"loss": 0.3434,
|
| 1878 |
+
"step": 1335
|
| 1879 |
+
},
|
| 1880 |
+
{
|
| 1881 |
+
"epoch": 1.2488350419384902,
|
| 1882 |
+
"grad_norm": 0.4540592435912553,
|
| 1883 |
+
"learning_rate": 3.243010010355541e-05,
|
| 1884 |
+
"loss": 0.3492,
|
| 1885 |
+
"step": 1340
|
| 1886 |
+
},
|
| 1887 |
+
{
|
| 1888 |
+
"epoch": 1.2534948741845293,
|
| 1889 |
+
"grad_norm": 0.3702760451037345,
|
| 1890 |
+
"learning_rate": 3.234380393510528e-05,
|
| 1891 |
+
"loss": 0.3368,
|
| 1892 |
+
"step": 1345
|
| 1893 |
+
},
|
| 1894 |
+
{
|
| 1895 |
+
"epoch": 1.2581547064305685,
|
| 1896 |
+
"grad_norm": 0.2917660806063631,
|
| 1897 |
+
"learning_rate": 3.225750776665516e-05,
|
| 1898 |
+
"loss": 0.3437,
|
| 1899 |
+
"step": 1350
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"epoch": 1.2628145386766076,
|
| 1903 |
+
"grad_norm": 0.3005932483580072,
|
| 1904 |
+
"learning_rate": 3.217121159820504e-05,
|
| 1905 |
+
"loss": 0.3533,
|
| 1906 |
+
"step": 1355
|
| 1907 |
+
},
|
| 1908 |
+
{
|
| 1909 |
+
"epoch": 1.2674743709226468,
|
| 1910 |
+
"grad_norm": 0.31926938268885113,
|
| 1911 |
+
"learning_rate": 3.208491542975492e-05,
|
| 1912 |
+
"loss": 0.3433,
|
| 1913 |
+
"step": 1360
|
| 1914 |
+
},
|
| 1915 |
+
{
|
| 1916 |
+
"epoch": 1.272134203168686,
|
| 1917 |
+
"grad_norm": 0.31462085002303564,
|
| 1918 |
+
"learning_rate": 3.19986192613048e-05,
|
| 1919 |
+
"loss": 0.3484,
|
| 1920 |
+
"step": 1365
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"epoch": 1.2767940354147251,
|
| 1924 |
+
"grad_norm": 0.3668129958844129,
|
| 1925 |
+
"learning_rate": 3.191232309285468e-05,
|
| 1926 |
+
"loss": 0.3473,
|
| 1927 |
+
"step": 1370
|
| 1928 |
+
},
|
| 1929 |
+
{
|
| 1930 |
+
"epoch": 1.281453867660764,
|
| 1931 |
+
"grad_norm": 0.36011114846832903,
|
| 1932 |
+
"learning_rate": 3.1826026924404556e-05,
|
| 1933 |
+
"loss": 0.3374,
|
| 1934 |
+
"step": 1375
|
| 1935 |
+
},
|
| 1936 |
+
{
|
| 1937 |
+
"epoch": 1.2861136999068035,
|
| 1938 |
+
"grad_norm": 0.3707136617543373,
|
| 1939 |
+
"learning_rate": 3.173973075595444e-05,
|
| 1940 |
+
"loss": 0.3519,
|
| 1941 |
+
"step": 1380
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"epoch": 1.2907735321528424,
|
| 1945 |
+
"grad_norm": 0.31634559612246044,
|
| 1946 |
+
"learning_rate": 3.165343458750431e-05,
|
| 1947 |
+
"loss": 0.3532,
|
| 1948 |
+
"step": 1385
|
| 1949 |
+
},
|
| 1950 |
+
{
|
| 1951 |
+
"epoch": 1.2954333643988816,
|
| 1952 |
+
"grad_norm": 0.36512675923388166,
|
| 1953 |
+
"learning_rate": 3.156713841905419e-05,
|
| 1954 |
+
"loss": 0.344,
|
| 1955 |
+
"step": 1390
|
| 1956 |
+
},
|
| 1957 |
+
{
|
| 1958 |
+
"epoch": 1.3000931966449207,
|
| 1959 |
+
"grad_norm": 0.2724467755048477,
|
| 1960 |
+
"learning_rate": 3.1480842250604076e-05,
|
| 1961 |
+
"loss": 0.3483,
|
| 1962 |
+
"step": 1395
|
| 1963 |
+
},
|
| 1964 |
+
{
|
| 1965 |
+
"epoch": 1.30475302889096,
|
| 1966 |
+
"grad_norm": 0.360595305928704,
|
| 1967 |
+
"learning_rate": 3.1394546082153954e-05,
|
| 1968 |
+
"loss": 0.3423,
|
| 1969 |
+
"step": 1400
|
| 1970 |
+
},
|
| 1971 |
+
{
|
| 1972 |
+
"epoch": 1.309412861136999,
|
| 1973 |
+
"grad_norm": 0.331462059138007,
|
| 1974 |
+
"learning_rate": 3.130824991370383e-05,
|
| 1975 |
+
"loss": 0.3533,
|
| 1976 |
+
"step": 1405
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 1.3140726933830382,
|
| 1980 |
+
"grad_norm": 0.3123108183369381,
|
| 1981 |
+
"learning_rate": 3.122195374525371e-05,
|
| 1982 |
+
"loss": 0.3412,
|
| 1983 |
+
"step": 1410
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"epoch": 1.3187325256290774,
|
| 1987 |
+
"grad_norm": 0.30675615259167105,
|
| 1988 |
+
"learning_rate": 3.113565757680359e-05,
|
| 1989 |
+
"loss": 0.3486,
|
| 1990 |
+
"step": 1415
|
| 1991 |
+
},
|
| 1992 |
+
{
|
| 1993 |
+
"epoch": 1.3233923578751166,
|
| 1994 |
+
"grad_norm": 0.3247753979750987,
|
| 1995 |
+
"learning_rate": 3.1049361408353474e-05,
|
| 1996 |
+
"loss": 0.336,
|
| 1997 |
+
"step": 1420
|
| 1998 |
+
},
|
| 1999 |
+
{
|
| 2000 |
+
"epoch": 1.3280521901211557,
|
| 2001 |
+
"grad_norm": 0.24573704166768065,
|
| 2002 |
+
"learning_rate": 3.096306523990335e-05,
|
| 2003 |
+
"loss": 0.3439,
|
| 2004 |
+
"step": 1425
|
| 2005 |
+
},
|
| 2006 |
+
{
|
| 2007 |
+
"epoch": 1.3327120223671947,
|
| 2008 |
+
"grad_norm": 0.2784691576334795,
|
| 2009 |
+
"learning_rate": 3.0876769071453223e-05,
|
| 2010 |
+
"loss": 0.3523,
|
| 2011 |
+
"step": 1430
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"epoch": 1.337371854613234,
|
| 2015 |
+
"grad_norm": 0.3279920083531312,
|
| 2016 |
+
"learning_rate": 3.079047290300311e-05,
|
| 2017 |
+
"loss": 0.3504,
|
| 2018 |
+
"step": 1435
|
| 2019 |
+
},
|
| 2020 |
+
{
|
| 2021 |
+
"epoch": 1.342031686859273,
|
| 2022 |
+
"grad_norm": 0.630072707291437,
|
| 2023 |
+
"learning_rate": 3.070417673455299e-05,
|
| 2024 |
+
"loss": 0.3508,
|
| 2025 |
+
"step": 1440
|
| 2026 |
+
},
|
| 2027 |
+
{
|
| 2028 |
+
"epoch": 1.3466915191053122,
|
| 2029 |
+
"grad_norm": 0.3062935559964653,
|
| 2030 |
+
"learning_rate": 3.061788056610287e-05,
|
| 2031 |
+
"loss": 0.3534,
|
| 2032 |
+
"step": 1445
|
| 2033 |
+
},
|
| 2034 |
+
{
|
| 2035 |
+
"epoch": 1.3513513513513513,
|
| 2036 |
+
"grad_norm": 0.34136097201146864,
|
| 2037 |
+
"learning_rate": 3.053158439765274e-05,
|
| 2038 |
+
"loss": 0.3395,
|
| 2039 |
+
"step": 1450
|
| 2040 |
+
},
|
| 2041 |
+
{
|
| 2042 |
+
"epoch": 1.3560111835973905,
|
| 2043 |
+
"grad_norm": 0.3051224256041293,
|
| 2044 |
+
"learning_rate": 3.0445288229202625e-05,
|
| 2045 |
+
"loss": 0.3469,
|
| 2046 |
+
"step": 1455
|
| 2047 |
+
},
|
| 2048 |
+
{
|
| 2049 |
+
"epoch": 1.3606710158434296,
|
| 2050 |
+
"grad_norm": 0.2975038729445838,
|
| 2051 |
+
"learning_rate": 3.0358992060752506e-05,
|
| 2052 |
+
"loss": 0.3529,
|
| 2053 |
+
"step": 1460
|
| 2054 |
+
},
|
| 2055 |
+
{
|
| 2056 |
+
"epoch": 1.3653308480894688,
|
| 2057 |
+
"grad_norm": 0.31823310979778036,
|
| 2058 |
+
"learning_rate": 3.027269589230238e-05,
|
| 2059 |
+
"loss": 0.347,
|
| 2060 |
+
"step": 1465
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 1.369990680335508,
|
| 2064 |
+
"grad_norm": 0.2896430196330622,
|
| 2065 |
+
"learning_rate": 3.018639972385226e-05,
|
| 2066 |
+
"loss": 0.3439,
|
| 2067 |
+
"step": 1470
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"epoch": 1.3746505125815471,
|
| 2071 |
+
"grad_norm": 0.352875453228656,
|
| 2072 |
+
"learning_rate": 3.010010355540214e-05,
|
| 2073 |
+
"loss": 0.346,
|
| 2074 |
+
"step": 1475
|
| 2075 |
+
},
|
| 2076 |
+
{
|
| 2077 |
+
"epoch": 1.3793103448275863,
|
| 2078 |
+
"grad_norm": 0.25417462359338994,
|
| 2079 |
+
"learning_rate": 3.001380738695202e-05,
|
| 2080 |
+
"loss": 0.3302,
|
| 2081 |
+
"step": 1480
|
| 2082 |
+
},
|
| 2083 |
+
{
|
| 2084 |
+
"epoch": 1.3839701770736252,
|
| 2085 |
+
"grad_norm": 0.2981082945058558,
|
| 2086 |
+
"learning_rate": 2.99275112185019e-05,
|
| 2087 |
+
"loss": 0.3493,
|
| 2088 |
+
"step": 1485
|
| 2089 |
+
},
|
| 2090 |
+
{
|
| 2091 |
+
"epoch": 1.3886300093196646,
|
| 2092 |
+
"grad_norm": 0.3626842220779335,
|
| 2093 |
+
"learning_rate": 2.984121505005178e-05,
|
| 2094 |
+
"loss": 0.3522,
|
| 2095 |
+
"step": 1490
|
| 2096 |
+
},
|
| 2097 |
+
{
|
| 2098 |
+
"epoch": 1.3932898415657036,
|
| 2099 |
+
"grad_norm": 0.34072090786926984,
|
| 2100 |
+
"learning_rate": 2.9754918881601657e-05,
|
| 2101 |
+
"loss": 0.3605,
|
| 2102 |
+
"step": 1495
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 1.3979496738117427,
|
| 2106 |
+
"grad_norm": 0.36566049127137545,
|
| 2107 |
+
"learning_rate": 2.966862271315154e-05,
|
| 2108 |
+
"loss": 0.3572,
|
| 2109 |
+
"step": 1500
|
| 2110 |
+
},
|
| 2111 |
+
{
|
| 2112 |
+
"epoch": 1.402609506057782,
|
| 2113 |
+
"grad_norm": 0.30367298168910534,
|
| 2114 |
+
"learning_rate": 2.9582326544701417e-05,
|
| 2115 |
+
"loss": 0.3503,
|
| 2116 |
+
"step": 1505
|
| 2117 |
+
},
|
| 2118 |
+
{
|
| 2119 |
+
"epoch": 1.407269338303821,
|
| 2120 |
+
"grad_norm": 0.2828621496023037,
|
| 2121 |
+
"learning_rate": 2.9496030376251292e-05,
|
| 2122 |
+
"loss": 0.3454,
|
| 2123 |
+
"step": 1510
|
| 2124 |
+
},
|
| 2125 |
+
{
|
| 2126 |
+
"epoch": 1.4119291705498602,
|
| 2127 |
+
"grad_norm": 0.3069391721232517,
|
| 2128 |
+
"learning_rate": 2.9409734207801177e-05,
|
| 2129 |
+
"loss": 0.3503,
|
| 2130 |
+
"step": 1515
|
| 2131 |
+
},
|
| 2132 |
+
{
|
| 2133 |
+
"epoch": 1.4165890027958994,
|
| 2134 |
+
"grad_norm": 0.37676918497607415,
|
| 2135 |
+
"learning_rate": 2.9323438039351052e-05,
|
| 2136 |
+
"loss": 0.3483,
|
| 2137 |
+
"step": 1520
|
| 2138 |
+
},
|
| 2139 |
+
{
|
| 2140 |
+
"epoch": 1.4212488350419386,
|
| 2141 |
+
"grad_norm": 0.3439297031393127,
|
| 2142 |
+
"learning_rate": 2.9237141870900937e-05,
|
| 2143 |
+
"loss": 0.3447,
|
| 2144 |
+
"step": 1525
|
| 2145 |
+
},
|
| 2146 |
+
{
|
| 2147 |
+
"epoch": 1.4259086672879777,
|
| 2148 |
+
"grad_norm": 0.3359348980856527,
|
| 2149 |
+
"learning_rate": 2.9150845702450812e-05,
|
| 2150 |
+
"loss": 0.3434,
|
| 2151 |
+
"step": 1530
|
| 2152 |
+
},
|
| 2153 |
+
{
|
| 2154 |
+
"epoch": 1.4305684995340169,
|
| 2155 |
+
"grad_norm": 0.3706215198106378,
|
| 2156 |
+
"learning_rate": 2.906454953400069e-05,
|
| 2157 |
+
"loss": 0.3481,
|
| 2158 |
+
"step": 1535
|
| 2159 |
+
},
|
| 2160 |
+
{
|
| 2161 |
+
"epoch": 1.4352283317800558,
|
| 2162 |
+
"grad_norm": 0.26527833144434804,
|
| 2163 |
+
"learning_rate": 2.897825336555057e-05,
|
| 2164 |
+
"loss": 0.3443,
|
| 2165 |
+
"step": 1540
|
| 2166 |
+
},
|
| 2167 |
+
{
|
| 2168 |
+
"epoch": 1.439888164026095,
|
| 2169 |
+
"grad_norm": 0.35150178535932075,
|
| 2170 |
+
"learning_rate": 2.889195719710045e-05,
|
| 2171 |
+
"loss": 0.3446,
|
| 2172 |
+
"step": 1545
|
| 2173 |
+
},
|
| 2174 |
+
{
|
| 2175 |
+
"epoch": 1.4445479962721341,
|
| 2176 |
+
"grad_norm": 0.34068866122527197,
|
| 2177 |
+
"learning_rate": 2.8805661028650328e-05,
|
| 2178 |
+
"loss": 0.341,
|
| 2179 |
+
"step": 1550
|
| 2180 |
+
},
|
| 2181 |
+
{
|
| 2182 |
+
"epoch": 1.4492078285181733,
|
| 2183 |
+
"grad_norm": 0.44905663737611096,
|
| 2184 |
+
"learning_rate": 2.871936486020021e-05,
|
| 2185 |
+
"loss": 0.3386,
|
| 2186 |
+
"step": 1555
|
| 2187 |
+
},
|
| 2188 |
+
{
|
| 2189 |
+
"epoch": 1.4538676607642125,
|
| 2190 |
+
"grad_norm": 0.31579368636055327,
|
| 2191 |
+
"learning_rate": 2.8633068691750088e-05,
|
| 2192 |
+
"loss": 0.341,
|
| 2193 |
+
"step": 1560
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"epoch": 1.4585274930102516,
|
| 2197 |
+
"grad_norm": 0.31166330874399784,
|
| 2198 |
+
"learning_rate": 2.854677252329997e-05,
|
| 2199 |
+
"loss": 0.3434,
|
| 2200 |
+
"step": 1565
|
| 2201 |
+
},
|
| 2202 |
+
{
|
| 2203 |
+
"epoch": 1.4631873252562908,
|
| 2204 |
+
"grad_norm": 0.3677885578765502,
|
| 2205 |
+
"learning_rate": 2.8460476354849848e-05,
|
| 2206 |
+
"loss": 0.3502,
|
| 2207 |
+
"step": 1570
|
| 2208 |
+
},
|
| 2209 |
+
{
|
| 2210 |
+
"epoch": 1.46784715750233,
|
| 2211 |
+
"grad_norm": 0.3763718138729198,
|
| 2212 |
+
"learning_rate": 2.8374180186399723e-05,
|
| 2213 |
+
"loss": 0.3501,
|
| 2214 |
+
"step": 1575
|
| 2215 |
+
},
|
| 2216 |
+
{
|
| 2217 |
+
"epoch": 1.4725069897483691,
|
| 2218 |
+
"grad_norm": 0.3319071868875067,
|
| 2219 |
+
"learning_rate": 2.8287884017949608e-05,
|
| 2220 |
+
"loss": 0.3513,
|
| 2221 |
+
"step": 1580
|
| 2222 |
+
},
|
| 2223 |
+
{
|
| 2224 |
+
"epoch": 1.477166821994408,
|
| 2225 |
+
"grad_norm": 0.35758179709780585,
|
| 2226 |
+
"learning_rate": 2.8201587849499482e-05,
|
| 2227 |
+
"loss": 0.3444,
|
| 2228 |
+
"step": 1585
|
| 2229 |
+
},
|
| 2230 |
+
{
|
| 2231 |
+
"epoch": 1.4818266542404475,
|
| 2232 |
+
"grad_norm": 0.33577991103004173,
|
| 2233 |
+
"learning_rate": 2.811529168104936e-05,
|
| 2234 |
+
"loss": 0.3545,
|
| 2235 |
+
"step": 1590
|
| 2236 |
+
},
|
| 2237 |
+
{
|
| 2238 |
+
"epoch": 1.4864864864864864,
|
| 2239 |
+
"grad_norm": 0.3025741672240685,
|
| 2240 |
+
"learning_rate": 2.8028995512599242e-05,
|
| 2241 |
+
"loss": 0.3453,
|
| 2242 |
+
"step": 1595
|
| 2243 |
+
},
|
| 2244 |
+
{
|
| 2245 |
+
"epoch": 1.4911463187325256,
|
| 2246 |
+
"grad_norm": 0.3828036069686848,
|
| 2247 |
+
"learning_rate": 2.794269934414912e-05,
|
| 2248 |
+
"loss": 0.3472,
|
| 2249 |
+
"step": 1600
|
| 2250 |
+
},
|
| 2251 |
+
{
|
| 2252 |
+
"epoch": 1.4958061509785647,
|
| 2253 |
+
"grad_norm": 0.3043778519192715,
|
| 2254 |
+
"learning_rate": 2.7856403175699002e-05,
|
| 2255 |
+
"loss": 0.3507,
|
| 2256 |
+
"step": 1605
|
| 2257 |
+
},
|
| 2258 |
+
{
|
| 2259 |
+
"epoch": 1.500465983224604,
|
| 2260 |
+
"grad_norm": 0.3382233040513506,
|
| 2261 |
+
"learning_rate": 2.777010700724888e-05,
|
| 2262 |
+
"loss": 0.3461,
|
| 2263 |
+
"step": 1610
|
| 2264 |
+
},
|
| 2265 |
+
{
|
| 2266 |
+
"epoch": 1.505125815470643,
|
| 2267 |
+
"grad_norm": 0.33027493167325966,
|
| 2268 |
+
"learning_rate": 2.768381083879876e-05,
|
| 2269 |
+
"loss": 0.3412,
|
| 2270 |
+
"step": 1615
|
| 2271 |
+
},
|
| 2272 |
+
{
|
| 2273 |
+
"epoch": 1.5097856477166822,
|
| 2274 |
+
"grad_norm": 0.28284106409517795,
|
| 2275 |
+
"learning_rate": 2.759751467034864e-05,
|
| 2276 |
+
"loss": 0.3434,
|
| 2277 |
+
"step": 1620
|
| 2278 |
+
},
|
| 2279 |
+
{
|
| 2280 |
+
"epoch": 1.5144454799627214,
|
| 2281 |
+
"grad_norm": 0.27285762390023743,
|
| 2282 |
+
"learning_rate": 2.751121850189852e-05,
|
| 2283 |
+
"loss": 0.3381,
|
| 2284 |
+
"step": 1625
|
| 2285 |
+
},
|
| 2286 |
+
{
|
| 2287 |
+
"epoch": 1.5191053122087603,
|
| 2288 |
+
"grad_norm": 0.2856683184270901,
|
| 2289 |
+
"learning_rate": 2.7424922333448393e-05,
|
| 2290 |
+
"loss": 0.3312,
|
| 2291 |
+
"step": 1630
|
| 2292 |
+
},
|
| 2293 |
+
{
|
| 2294 |
+
"epoch": 1.5237651444547997,
|
| 2295 |
+
"grad_norm": 0.32602889682943975,
|
| 2296 |
+
"learning_rate": 2.7338626164998278e-05,
|
| 2297 |
+
"loss": 0.3384,
|
| 2298 |
+
"step": 1635
|
| 2299 |
+
},
|
| 2300 |
+
{
|
| 2301 |
+
"epoch": 1.5284249767008387,
|
| 2302 |
+
"grad_norm": 0.3112657240375754,
|
| 2303 |
+
"learning_rate": 2.7252329996548153e-05,
|
| 2304 |
+
"loss": 0.3412,
|
| 2305 |
+
"step": 1640
|
| 2306 |
+
},
|
| 2307 |
+
{
|
| 2308 |
+
"epoch": 1.533084808946878,
|
| 2309 |
+
"grad_norm": 0.26091256859148315,
|
| 2310 |
+
"learning_rate": 2.7166033828098038e-05,
|
| 2311 |
+
"loss": 0.3566,
|
| 2312 |
+
"step": 1645
|
| 2313 |
+
},
|
| 2314 |
+
{
|
| 2315 |
+
"epoch": 1.537744641192917,
|
| 2316 |
+
"grad_norm": 0.3123052376838657,
|
| 2317 |
+
"learning_rate": 2.7079737659647913e-05,
|
| 2318 |
+
"loss": 0.3455,
|
| 2319 |
+
"step": 1650
|
| 2320 |
+
}
|
| 2321 |
+
],
|
| 2322 |
+
"logging_steps": 5,
|
| 2323 |
+
"max_steps": 3219,
|
| 2324 |
+
"num_input_tokens_seen": 0,
|
| 2325 |
+
"num_train_epochs": 3,
|
| 2326 |
+
"save_steps": 550,
|
| 2327 |
+
"stateful_callbacks": {
|
| 2328 |
+
"TrainerControl": {
|
| 2329 |
+
"args": {
|
| 2330 |
+
"should_epoch_stop": false,
|
| 2331 |
+
"should_evaluate": false,
|
| 2332 |
+
"should_log": false,
|
| 2333 |
+
"should_save": true,
|
| 2334 |
+
"should_training_stop": false
|
| 2335 |
+
},
|
| 2336 |
+
"attributes": {}
|
| 2337 |
+
}
|
| 2338 |
+
},
|
| 2339 |
+
"total_flos": 1.412694515424166e+18,
|
| 2340 |
+
"train_batch_size": 1,
|
| 2341 |
+
"trial_name": null,
|
| 2342 |
+
"trial_params": null
|
| 2343 |
+
}
|
checkpoint-1650/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d3046f52588a443b20a3609c281264c201765ee86ad14b8ee06a6c419a206096
|
| 3 |
+
size 7480
|
checkpoint-1650/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1650/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|