ZMC2019 commited on
Commit
ade0af8
·
verified ·
1 Parent(s): a5e6ca5

Training in progress, step 1650, checkpoint

Browse files
Files changed (43) hide show
  1. .gitattributes +1 -0
  2. checkpoint-1650/added_tokens.json +24 -0
  3. checkpoint-1650/config.json +32 -0
  4. checkpoint-1650/generation_config.json +9 -0
  5. checkpoint-1650/global_step1650/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1650/global_step1650/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1650/global_step1650/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1650/global_step1650/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1650/global_step1650/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1650/global_step1650/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1650/global_step1650/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1650/global_step1650/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-1650/global_step1650/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-1650/global_step1650/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-1650/global_step1650/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-1650/global_step1650/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-1650/global_step1650/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-1650/global_step1650/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-1650/global_step1650/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-1650/global_step1650/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  21. checkpoint-1650/latest +1 -0
  22. checkpoint-1650/merges.txt +0 -0
  23. checkpoint-1650/model-00001-of-00004.safetensors +3 -0
  24. checkpoint-1650/model-00002-of-00004.safetensors +3 -0
  25. checkpoint-1650/model-00003-of-00004.safetensors +3 -0
  26. checkpoint-1650/model-00004-of-00004.safetensors +3 -0
  27. checkpoint-1650/model.safetensors.index.json +394 -0
  28. checkpoint-1650/rng_state_0.pth +3 -0
  29. checkpoint-1650/rng_state_1.pth +3 -0
  30. checkpoint-1650/rng_state_2.pth +3 -0
  31. checkpoint-1650/rng_state_3.pth +3 -0
  32. checkpoint-1650/rng_state_4.pth +3 -0
  33. checkpoint-1650/rng_state_5.pth +3 -0
  34. checkpoint-1650/rng_state_6.pth +3 -0
  35. checkpoint-1650/rng_state_7.pth +3 -0
  36. checkpoint-1650/scheduler.pt +3 -0
  37. checkpoint-1650/special_tokens_map.json +25 -0
  38. checkpoint-1650/tokenizer.json +3 -0
  39. checkpoint-1650/tokenizer_config.json +208 -0
  40. checkpoint-1650/trainer_state.json +2343 -0
  41. checkpoint-1650/training_args.bin +3 -0
  42. checkpoint-1650/vocab.json +0 -0
  43. checkpoint-1650/zero_to_fp32.py +674 -0
.gitattributes CHANGED
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
  checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
  checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-1650/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-1650/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1650/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen7B-Math-L28-LP32",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "end_conv_idx": 16,
9
+ "eos_token_id": 151645,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3584,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2",
17
+ "num_attention_heads": 28,
18
+ "num_conv": 1,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 4,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 300000.0,
24
+ "sliding_window": null,
25
+ "start_conv_idx": 12,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.49.0",
29
+ "use_cache": false,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 152064
32
+ }
checkpoint-1650/generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": [
4
+ 151645,
5
+ 151643
6
+ ],
7
+ "pad_token_id": 151643,
8
+ "transformers_version": "4.49.0"
9
+ }
checkpoint-1650/global_step1650/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27755436c6a3324ad6cad5329630b2873d1e666b04ef3f4c9c0c629b4046b135
3
+ size 12821777702
checkpoint-1650/global_step1650/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fe07ee3312fb86f96120c6a32b709eff8c3311f546ce6e621f448a227be000c
3
+ size 12821777702
checkpoint-1650/global_step1650/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d22ec558327df606cdac879a62ffd032d278e46c2b183a4043e9ca55df0381f
3
+ size 12821777702
checkpoint-1650/global_step1650/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8fcd752d59f4dd0002fb60cfc1755e059ffae19b30aaaabb620591a3f90c764
3
+ size 12821777702
checkpoint-1650/global_step1650/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e81d3565da7e5b538fccf3bbbcb58c0cde44ed5c07f2bf4697a8c937ea443da0
3
+ size 12821777702
checkpoint-1650/global_step1650/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2dc5ce04b6c412ef59050b788a232f8cd3efc4c77220767fc7bdc20e79e1844
3
+ size 12821777702
checkpoint-1650/global_step1650/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457eada28f3fda1a4afbfd25d9510c37af6fc3dcf386a22718c8d7db4a5ab6ac
3
+ size 12821777702
checkpoint-1650/global_step1650/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1491066678bbaa2e817b7e2c9a8661076e4db04b98ce45defc89142dd71a398a
3
+ size 12821777702
checkpoint-1650/global_step1650/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e481415f6d27f55d6624c19f8bb47fc4ea99432c01ef532ef701cd83678ad5a4
3
+ size 188165
checkpoint-1650/global_step1650/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd9dcc8b2900d97f75b5ffb9e3fabb4ddca9f9b4f5285d6f7224535b2e418b55
3
+ size 188165
checkpoint-1650/global_step1650/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ca227a1d6b5babec81bdbcfc4a8748a0508d31cc20a688e63908bd73ff2beb0
3
+ size 188165
checkpoint-1650/global_step1650/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:129174492e79c3d2a8bdb3cc9192244ff38075186c9ebcb1ab7cc392a3c050f1
3
+ size 188165
checkpoint-1650/global_step1650/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b4e0b754d0f83579105fa9d80837718d724875d613f4f17bd706fd326cf8281
3
+ size 188165
checkpoint-1650/global_step1650/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f696d396a3f0381df10df15701ae424dbc1726b2048cf9b54b7a7aa3a54a6964
3
+ size 188165
checkpoint-1650/global_step1650/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd2ff97898507370c076375a7d798cc5d4ab7b89d5d5be66ae9e6f073034b0fc
3
+ size 188165
checkpoint-1650/global_step1650/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a77569dfb3c360ef61eacdef665361ad89034c889196f869dcdc566f284705b
3
+ size 188165
checkpoint-1650/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1650
checkpoint-1650/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1650/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cebe966a4dfbea40d3b13a7a60508a2a58fa0d15c0cf9fd94aee9e8d4666d9f1
3
+ size 4877660776
checkpoint-1650/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0569dfc6396a999fa7e0937b09ee530a3b7118e516690ef8b57825895cd071ea
3
+ size 4932751008
checkpoint-1650/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09e028cc7d200ddd07ed56f3e6d8cb282ff1f7c3a70bb67649ddafb5803b00c3
3
+ size 4991495888
checkpoint-1650/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38bd6134ca20ad8e1c5be08a5d1a1a755ff275b18e50bd542cfc8fa5b5915bf0
3
+ size 2293832048
checkpoint-1650/model.safetensors.index.json ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17095695360
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
320
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
321
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
322
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
323
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
324
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
325
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
333
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
334
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
335
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
336
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
337
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
338
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
339
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
340
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
341
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
342
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
343
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
344
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
345
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
347
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
349
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
350
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
351
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
353
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
354
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
355
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
356
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
357
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
358
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
359
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
361
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
362
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
363
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
365
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
366
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
367
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
369
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
370
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
371
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
372
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
373
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
374
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
375
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
377
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
379
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
380
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
381
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
382
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
383
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
384
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
385
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
386
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
387
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
388
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
389
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
390
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
391
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
392
+ "model.norm.weight": "model-00004-of-00004.safetensors"
393
+ }
394
+ }
checkpoint-1650/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
3
+ size 15984
checkpoint-1650/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
3
+ size 15984
checkpoint-1650/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
3
+ size 15984
checkpoint-1650/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
3
+ size 15984
checkpoint-1650/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
3
+ size 15984
checkpoint-1650/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
3
+ size 15984
checkpoint-1650/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
3
+ size 15984
checkpoint-1650/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
3
+ size 15984
checkpoint-1650/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eca48213d2534f9efd883918137c187e5228038fab577926bdba008860345829
3
+ size 1064
checkpoint-1650/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-1650/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1650/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-1650/trainer_state.json ADDED
@@ -0,0 +1,2343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.537744641192917,
5
+ "eval_steps": 500,
6
+ "global_step": 1650,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004659832246039142,
13
+ "grad_norm": 59.78214918326703,
14
+ "learning_rate": 7.763975155279503e-07,
15
+ "loss": 10.6865,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.009319664492078284,
20
+ "grad_norm": 61.61821429517621,
21
+ "learning_rate": 1.5527950310559006e-06,
22
+ "loss": 10.4783,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.013979496738117428,
27
+ "grad_norm": 100.18886340338842,
28
+ "learning_rate": 2.329192546583851e-06,
29
+ "loss": 8.8595,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.01863932898415657,
34
+ "grad_norm": 28.80282471816165,
35
+ "learning_rate": 3.1055900621118013e-06,
36
+ "loss": 2.9699,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.023299161230195712,
41
+ "grad_norm": 2.9469993742141027,
42
+ "learning_rate": 3.881987577639752e-06,
43
+ "loss": 1.3152,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.027958993476234855,
48
+ "grad_norm": 1.273876748177396,
49
+ "learning_rate": 4.658385093167702e-06,
50
+ "loss": 0.9979,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.032618825722273995,
55
+ "grad_norm": 1.1847847745298432,
56
+ "learning_rate": 5.4347826086956525e-06,
57
+ "loss": 0.8462,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.03727865796831314,
62
+ "grad_norm": 0.6184161495875878,
63
+ "learning_rate": 6.2111801242236025e-06,
64
+ "loss": 0.7823,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.04193849021435228,
69
+ "grad_norm": 0.4611063105597401,
70
+ "learning_rate": 6.9875776397515525e-06,
71
+ "loss": 0.7195,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.046598322460391424,
76
+ "grad_norm": 0.3903179820498685,
77
+ "learning_rate": 7.763975155279503e-06,
78
+ "loss": 0.6868,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.05125815470643057,
83
+ "grad_norm": 0.44815192407139737,
84
+ "learning_rate": 8.540372670807453e-06,
85
+ "loss": 0.6483,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.05591798695246971,
90
+ "grad_norm": 0.3363352375310443,
91
+ "learning_rate": 9.316770186335403e-06,
92
+ "loss": 0.61,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.06057781919850885,
97
+ "grad_norm": 0.31214409078055283,
98
+ "learning_rate": 1.0093167701863353e-05,
99
+ "loss": 0.5932,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.06523765144454799,
104
+ "grad_norm": 0.32957450493165075,
105
+ "learning_rate": 1.0869565217391305e-05,
106
+ "loss": 0.5886,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.06989748369058714,
111
+ "grad_norm": 0.3311294918877853,
112
+ "learning_rate": 1.1645962732919255e-05,
113
+ "loss": 0.5704,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.07455731593662628,
118
+ "grad_norm": 0.3181163049876225,
119
+ "learning_rate": 1.2422360248447205e-05,
120
+ "loss": 0.5604,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.07921714818266543,
125
+ "grad_norm": 0.3310250029185392,
126
+ "learning_rate": 1.3198757763975155e-05,
127
+ "loss": 0.5508,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.08387698042870456,
132
+ "grad_norm": 0.2864578039803888,
133
+ "learning_rate": 1.3975155279503105e-05,
134
+ "loss": 0.5606,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.08853681267474371,
139
+ "grad_norm": 0.2527763382663063,
140
+ "learning_rate": 1.4751552795031057e-05,
141
+ "loss": 0.542,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.09319664492078285,
146
+ "grad_norm": 0.30977172064299785,
147
+ "learning_rate": 1.5527950310559007e-05,
148
+ "loss": 0.5272,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.097856477166822,
153
+ "grad_norm": 0.3503262906800675,
154
+ "learning_rate": 1.630434782608696e-05,
155
+ "loss": 0.5214,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.10251630941286113,
160
+ "grad_norm": 0.3032318880335728,
161
+ "learning_rate": 1.7080745341614907e-05,
162
+ "loss": 0.5229,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.10717614165890028,
167
+ "grad_norm": 0.32192998759757896,
168
+ "learning_rate": 1.785714285714286e-05,
169
+ "loss": 0.5201,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.11183597390493942,
174
+ "grad_norm": 0.37017049044979194,
175
+ "learning_rate": 1.8633540372670807e-05,
176
+ "loss": 0.5067,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.11649580615097857,
181
+ "grad_norm": 0.27625624649694025,
182
+ "learning_rate": 1.940993788819876e-05,
183
+ "loss": 0.5026,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.1211556383970177,
188
+ "grad_norm": 0.32732522406326287,
189
+ "learning_rate": 2.0186335403726707e-05,
190
+ "loss": 0.5083,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.12581547064305684,
195
+ "grad_norm": 0.3974302327759709,
196
+ "learning_rate": 2.096273291925466e-05,
197
+ "loss": 0.5069,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.13047530288909598,
202
+ "grad_norm": 0.49055099062465235,
203
+ "learning_rate": 2.173913043478261e-05,
204
+ "loss": 0.4918,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.13513513513513514,
209
+ "grad_norm": 0.3509510737287038,
210
+ "learning_rate": 2.2515527950310562e-05,
211
+ "loss": 0.5182,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.13979496738117428,
216
+ "grad_norm": 0.4060738145091598,
217
+ "learning_rate": 2.329192546583851e-05,
218
+ "loss": 0.4924,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.14445479962721341,
223
+ "grad_norm": 0.42238178931670933,
224
+ "learning_rate": 2.4068322981366462e-05,
225
+ "loss": 0.5005,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.14911463187325255,
230
+ "grad_norm": 0.42361270461040995,
231
+ "learning_rate": 2.484472049689441e-05,
232
+ "loss": 0.4809,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.15377446411929171,
237
+ "grad_norm": 0.4419148082648927,
238
+ "learning_rate": 2.5621118012422362e-05,
239
+ "loss": 0.4922,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.15843429636533085,
244
+ "grad_norm": 0.37817457175825797,
245
+ "learning_rate": 2.639751552795031e-05,
246
+ "loss": 0.4682,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.16309412861137,
251
+ "grad_norm": 0.4612740179437555,
252
+ "learning_rate": 2.7173913043478262e-05,
253
+ "loss": 0.4812,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.16775396085740912,
258
+ "grad_norm": 0.4027204736632852,
259
+ "learning_rate": 2.795031055900621e-05,
260
+ "loss": 0.4743,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.1724137931034483,
265
+ "grad_norm": 0.3662916369622068,
266
+ "learning_rate": 2.8726708074534165e-05,
267
+ "loss": 0.4771,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.17707362534948742,
272
+ "grad_norm": 0.44549022951820444,
273
+ "learning_rate": 2.9503105590062114e-05,
274
+ "loss": 0.4872,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.18173345759552656,
279
+ "grad_norm": 0.4421692278535386,
280
+ "learning_rate": 3.0279503105590062e-05,
281
+ "loss": 0.4768,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.1863932898415657,
286
+ "grad_norm": 0.4592171701659634,
287
+ "learning_rate": 3.1055900621118014e-05,
288
+ "loss": 0.4782,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.19105312208760486,
293
+ "grad_norm": 0.5338610618981041,
294
+ "learning_rate": 3.183229813664597e-05,
295
+ "loss": 0.4677,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.195712954333644,
300
+ "grad_norm": 0.679375515050287,
301
+ "learning_rate": 3.260869565217392e-05,
302
+ "loss": 0.4817,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.20037278657968313,
307
+ "grad_norm": 0.5075771202954662,
308
+ "learning_rate": 3.3385093167701865e-05,
309
+ "loss": 0.4632,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.20503261882572227,
314
+ "grad_norm": 0.5271972882853628,
315
+ "learning_rate": 3.4161490683229814e-05,
316
+ "loss": 0.4674,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.2096924510717614,
321
+ "grad_norm": 0.45927485782401883,
322
+ "learning_rate": 3.493788819875777e-05,
323
+ "loss": 0.4496,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.21435228331780057,
328
+ "grad_norm": 0.3875430276374643,
329
+ "learning_rate": 3.571428571428572e-05,
330
+ "loss": 0.4628,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.2190121155638397,
335
+ "grad_norm": 0.43592470909651004,
336
+ "learning_rate": 3.6490683229813665e-05,
337
+ "loss": 0.4604,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.22367194780987884,
342
+ "grad_norm": 0.45541861707423287,
343
+ "learning_rate": 3.7267080745341614e-05,
344
+ "loss": 0.4578,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.22833178005591798,
349
+ "grad_norm": 0.5415802082513514,
350
+ "learning_rate": 3.804347826086957e-05,
351
+ "loss": 0.4628,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.23299161230195714,
356
+ "grad_norm": 0.48756789908879733,
357
+ "learning_rate": 3.881987577639752e-05,
358
+ "loss": 0.4551,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.23765144454799628,
363
+ "grad_norm": 0.48641029082339876,
364
+ "learning_rate": 3.9596273291925465e-05,
365
+ "loss": 0.4636,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.2423112767940354,
370
+ "grad_norm": 0.44167537560377024,
371
+ "learning_rate": 4.0372670807453414e-05,
372
+ "loss": 0.4584,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.24697110904007455,
377
+ "grad_norm": 0.49523500628083084,
378
+ "learning_rate": 4.114906832298137e-05,
379
+ "loss": 0.457,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.2516309412861137,
384
+ "grad_norm": 0.46362590765498735,
385
+ "learning_rate": 4.192546583850932e-05,
386
+ "loss": 0.4553,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.25629077353215285,
391
+ "grad_norm": 0.41387594745783063,
392
+ "learning_rate": 4.270186335403727e-05,
393
+ "loss": 0.4606,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.26095060577819196,
398
+ "grad_norm": 0.4327868844195844,
399
+ "learning_rate": 4.347826086956522e-05,
400
+ "loss": 0.4529,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.2656104380242311,
405
+ "grad_norm": 0.425878793618421,
406
+ "learning_rate": 4.425465838509317e-05,
407
+ "loss": 0.457,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.2702702702702703,
412
+ "grad_norm": 0.49167640847055744,
413
+ "learning_rate": 4.5031055900621124e-05,
414
+ "loss": 0.4586,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.2749301025163094,
419
+ "grad_norm": 0.6223762427590684,
420
+ "learning_rate": 4.580745341614907e-05,
421
+ "loss": 0.4627,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.27958993476234856,
426
+ "grad_norm": 0.6138447122463503,
427
+ "learning_rate": 4.658385093167702e-05,
428
+ "loss": 0.4643,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.2842497670083877,
433
+ "grad_norm": 0.5410077879825527,
434
+ "learning_rate": 4.736024844720497e-05,
435
+ "loss": 0.4531,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.28890959925442683,
440
+ "grad_norm": 0.5248106064020833,
441
+ "learning_rate": 4.8136645962732924e-05,
442
+ "loss": 0.4453,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 0.293569431500466,
447
+ "grad_norm": 0.4576312238038398,
448
+ "learning_rate": 4.891304347826087e-05,
449
+ "loss": 0.4531,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 0.2982292637465051,
454
+ "grad_norm": 0.7616375740291316,
455
+ "learning_rate": 4.968944099378882e-05,
456
+ "loss": 0.4387,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 0.30288909599254427,
461
+ "grad_norm": 0.5230246761762287,
462
+ "learning_rate": 4.994822229892993e-05,
463
+ "loss": 0.4367,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 0.30754892823858343,
468
+ "grad_norm": 0.4333888474147187,
469
+ "learning_rate": 4.986192613047981e-05,
470
+ "loss": 0.4468,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 0.31220876048462254,
475
+ "grad_norm": 0.6558069118015527,
476
+ "learning_rate": 4.977562996202969e-05,
477
+ "loss": 0.447,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 0.3168685927306617,
482
+ "grad_norm": 0.4781469048268466,
483
+ "learning_rate": 4.968933379357957e-05,
484
+ "loss": 0.4487,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 0.32152842497670087,
489
+ "grad_norm": 0.4582486158349481,
490
+ "learning_rate": 4.9603037625129445e-05,
491
+ "loss": 0.4433,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 0.32618825722274,
496
+ "grad_norm": 0.4234664780262906,
497
+ "learning_rate": 4.951674145667933e-05,
498
+ "loss": 0.4568,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 0.33084808946877914,
503
+ "grad_norm": 0.4766441062632173,
504
+ "learning_rate": 4.94304452882292e-05,
505
+ "loss": 0.4431,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 0.33550792171481825,
510
+ "grad_norm": 0.5294140666427822,
511
+ "learning_rate": 4.934414911977908e-05,
512
+ "loss": 0.4405,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 0.3401677539608574,
517
+ "grad_norm": 0.3838225157756671,
518
+ "learning_rate": 4.9257852951328965e-05,
519
+ "loss": 0.437,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 0.3448275862068966,
524
+ "grad_norm": 0.4289011151413574,
525
+ "learning_rate": 4.917155678287884e-05,
526
+ "loss": 0.4498,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 0.3494874184529357,
531
+ "grad_norm": 0.4739139367556648,
532
+ "learning_rate": 4.908526061442872e-05,
533
+ "loss": 0.4364,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 0.35414725069897485,
538
+ "grad_norm": 0.6531685734098429,
539
+ "learning_rate": 4.89989644459786e-05,
540
+ "loss": 0.4507,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 0.35880708294501396,
545
+ "grad_norm": 0.38736077721702633,
546
+ "learning_rate": 4.891266827752848e-05,
547
+ "loss": 0.4526,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 0.3634669151910531,
552
+ "grad_norm": 0.39074723361967706,
553
+ "learning_rate": 4.882637210907836e-05,
554
+ "loss": 0.4372,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 0.3681267474370923,
559
+ "grad_norm": 0.4998720672786241,
560
+ "learning_rate": 4.874007594062824e-05,
561
+ "loss": 0.4432,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 0.3727865796831314,
566
+ "grad_norm": 0.41449696680501236,
567
+ "learning_rate": 4.865377977217811e-05,
568
+ "loss": 0.4284,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 0.37744641192917056,
573
+ "grad_norm": 0.42798981510455325,
574
+ "learning_rate": 4.8567483603728e-05,
575
+ "loss": 0.4466,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 0.3821062441752097,
580
+ "grad_norm": 0.453510571603012,
581
+ "learning_rate": 4.8481187435277875e-05,
582
+ "loss": 0.4425,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 0.38676607642124883,
587
+ "grad_norm": 0.5613852564226437,
588
+ "learning_rate": 4.839489126682776e-05,
589
+ "loss": 0.4296,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 0.391425908667288,
594
+ "grad_norm": 0.4991311823287778,
595
+ "learning_rate": 4.830859509837763e-05,
596
+ "loss": 0.4477,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 0.3960857409133271,
601
+ "grad_norm": 0.41710093216407557,
602
+ "learning_rate": 4.822229892992751e-05,
603
+ "loss": 0.4451,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 0.40074557315936626,
608
+ "grad_norm": 0.44852195468081424,
609
+ "learning_rate": 4.8136002761477395e-05,
610
+ "loss": 0.4322,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 0.40540540540540543,
615
+ "grad_norm": 0.5873258297489329,
616
+ "learning_rate": 4.804970659302727e-05,
617
+ "loss": 0.445,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 0.41006523765144454,
622
+ "grad_norm": 0.5301184440251494,
623
+ "learning_rate": 4.796341042457715e-05,
624
+ "loss": 0.439,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 0.4147250698974837,
629
+ "grad_norm": 0.554152067322795,
630
+ "learning_rate": 4.787711425612703e-05,
631
+ "loss": 0.4337,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 0.4193849021435228,
636
+ "grad_norm": 0.4875794890348032,
637
+ "learning_rate": 4.779081808767691e-05,
638
+ "loss": 0.4245,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 0.424044734389562,
643
+ "grad_norm": 0.4690783572871423,
644
+ "learning_rate": 4.770452191922679e-05,
645
+ "loss": 0.4314,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 0.42870456663560114,
650
+ "grad_norm": 0.3725289513240759,
651
+ "learning_rate": 4.761822575077667e-05,
652
+ "loss": 0.4283,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 0.43336439888164024,
657
+ "grad_norm": 0.4830268598668616,
658
+ "learning_rate": 4.753192958232654e-05,
659
+ "loss": 0.4255,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 0.4380242311276794,
664
+ "grad_norm": 0.43173494250112954,
665
+ "learning_rate": 4.744563341387643e-05,
666
+ "loss": 0.4378,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 0.4426840633737186,
671
+ "grad_norm": 0.43237002431737065,
672
+ "learning_rate": 4.7359337245426306e-05,
673
+ "loss": 0.4277,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 0.4473438956197577,
678
+ "grad_norm": 0.41385681702794824,
679
+ "learning_rate": 4.7273041076976184e-05,
680
+ "loss": 0.4394,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 0.45200372786579684,
685
+ "grad_norm": 0.40157124060011173,
686
+ "learning_rate": 4.718674490852606e-05,
687
+ "loss": 0.432,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 0.45666356011183595,
692
+ "grad_norm": 0.39938983254093463,
693
+ "learning_rate": 4.710044874007594e-05,
694
+ "loss": 0.4264,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 0.4613233923578751,
699
+ "grad_norm": 0.39732323279012777,
700
+ "learning_rate": 4.7014152571625826e-05,
701
+ "loss": 0.4321,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 0.4659832246039143,
706
+ "grad_norm": 0.4747358464791143,
707
+ "learning_rate": 4.6927856403175704e-05,
708
+ "loss": 0.435,
709
+ "step": 500
710
+ },
711
+ {
712
+ "epoch": 0.4706430568499534,
713
+ "grad_norm": 0.3698718174123855,
714
+ "learning_rate": 4.684156023472558e-05,
715
+ "loss": 0.4221,
716
+ "step": 505
717
+ },
718
+ {
719
+ "epoch": 0.47530288909599255,
720
+ "grad_norm": 0.4305572996344627,
721
+ "learning_rate": 4.675526406627546e-05,
722
+ "loss": 0.4303,
723
+ "step": 510
724
+ },
725
+ {
726
+ "epoch": 0.47996272134203166,
727
+ "grad_norm": 0.6085259797324423,
728
+ "learning_rate": 4.666896789782534e-05,
729
+ "loss": 0.4281,
730
+ "step": 515
731
+ },
732
+ {
733
+ "epoch": 0.4846225535880708,
734
+ "grad_norm": 0.5730318489213171,
735
+ "learning_rate": 4.658267172937522e-05,
736
+ "loss": 0.4321,
737
+ "step": 520
738
+ },
739
+ {
740
+ "epoch": 0.48928238583411,
741
+ "grad_norm": 0.4332245949035479,
742
+ "learning_rate": 4.64963755609251e-05,
743
+ "loss": 0.4309,
744
+ "step": 525
745
+ },
746
+ {
747
+ "epoch": 0.4939422180801491,
748
+ "grad_norm": 0.508102013567185,
749
+ "learning_rate": 4.641007939247497e-05,
750
+ "loss": 0.428,
751
+ "step": 530
752
+ },
753
+ {
754
+ "epoch": 0.49860205032618826,
755
+ "grad_norm": 0.34669842614662666,
756
+ "learning_rate": 4.632378322402486e-05,
757
+ "loss": 0.4283,
758
+ "step": 535
759
+ },
760
+ {
761
+ "epoch": 0.5032618825722274,
762
+ "grad_norm": 0.3889254150420956,
763
+ "learning_rate": 4.6237487055574736e-05,
764
+ "loss": 0.4178,
765
+ "step": 540
766
+ },
767
+ {
768
+ "epoch": 0.5079217148182665,
769
+ "grad_norm": 0.49239466237923585,
770
+ "learning_rate": 4.6151190887124615e-05,
771
+ "loss": 0.4244,
772
+ "step": 545
773
+ },
774
+ {
775
+ "epoch": 0.5125815470643057,
776
+ "grad_norm": 0.4397316581317278,
777
+ "learning_rate": 4.606489471867449e-05,
778
+ "loss": 0.4245,
779
+ "step": 550
780
+ },
781
+ {
782
+ "epoch": 0.5172413793103449,
783
+ "grad_norm": 0.3573410355093717,
784
+ "learning_rate": 4.597859855022437e-05,
785
+ "loss": 0.4192,
786
+ "step": 555
787
+ },
788
+ {
789
+ "epoch": 0.5219012115563839,
790
+ "grad_norm": 0.43267928489519075,
791
+ "learning_rate": 4.589230238177425e-05,
792
+ "loss": 0.4397,
793
+ "step": 560
794
+ },
795
+ {
796
+ "epoch": 0.5265610438024231,
797
+ "grad_norm": 0.4821719775119577,
798
+ "learning_rate": 4.5806006213324134e-05,
799
+ "loss": 0.4177,
800
+ "step": 565
801
+ },
802
+ {
803
+ "epoch": 0.5312208760484622,
804
+ "grad_norm": 0.5349367976109402,
805
+ "learning_rate": 4.5719710044874006e-05,
806
+ "loss": 0.4175,
807
+ "step": 570
808
+ },
809
+ {
810
+ "epoch": 0.5358807082945014,
811
+ "grad_norm": 0.47146780494171403,
812
+ "learning_rate": 4.563341387642389e-05,
813
+ "loss": 0.4234,
814
+ "step": 575
815
+ },
816
+ {
817
+ "epoch": 0.5405405405405406,
818
+ "grad_norm": 0.3724800991591985,
819
+ "learning_rate": 4.554711770797377e-05,
820
+ "loss": 0.4238,
821
+ "step": 580
822
+ },
823
+ {
824
+ "epoch": 0.5452003727865797,
825
+ "grad_norm": 0.46072368721402923,
826
+ "learning_rate": 4.546082153952365e-05,
827
+ "loss": 0.4209,
828
+ "step": 585
829
+ },
830
+ {
831
+ "epoch": 0.5498602050326188,
832
+ "grad_norm": 0.40398358486961483,
833
+ "learning_rate": 4.5374525371073526e-05,
834
+ "loss": 0.4171,
835
+ "step": 590
836
+ },
837
+ {
838
+ "epoch": 0.554520037278658,
839
+ "grad_norm": 0.3510727726291796,
840
+ "learning_rate": 4.5288229202623404e-05,
841
+ "loss": 0.4191,
842
+ "step": 595
843
+ },
844
+ {
845
+ "epoch": 0.5591798695246971,
846
+ "grad_norm": 0.38603847092047144,
847
+ "learning_rate": 4.520193303417328e-05,
848
+ "loss": 0.4194,
849
+ "step": 600
850
+ },
851
+ {
852
+ "epoch": 0.5638397017707363,
853
+ "grad_norm": 0.3689646251475895,
854
+ "learning_rate": 4.511563686572317e-05,
855
+ "loss": 0.4182,
856
+ "step": 605
857
+ },
858
+ {
859
+ "epoch": 0.5684995340167754,
860
+ "grad_norm": 0.408796996489251,
861
+ "learning_rate": 4.5029340697273045e-05,
862
+ "loss": 0.4293,
863
+ "step": 610
864
+ },
865
+ {
866
+ "epoch": 0.5731593662628145,
867
+ "grad_norm": 0.32130017833210983,
868
+ "learning_rate": 4.4943044528822923e-05,
869
+ "loss": 0.4159,
870
+ "step": 615
871
+ },
872
+ {
873
+ "epoch": 0.5778191985088537,
874
+ "grad_norm": 0.3772249822258766,
875
+ "learning_rate": 4.48567483603728e-05,
876
+ "loss": 0.4131,
877
+ "step": 620
878
+ },
879
+ {
880
+ "epoch": 0.5824790307548928,
881
+ "grad_norm": 0.35575898721323274,
882
+ "learning_rate": 4.477045219192268e-05,
883
+ "loss": 0.4344,
884
+ "step": 625
885
+ },
886
+ {
887
+ "epoch": 0.587138863000932,
888
+ "grad_norm": 0.38751558564769756,
889
+ "learning_rate": 4.4684156023472565e-05,
890
+ "loss": 0.425,
891
+ "step": 630
892
+ },
893
+ {
894
+ "epoch": 0.5917986952469712,
895
+ "grad_norm": 0.4663549933535284,
896
+ "learning_rate": 4.4597859855022436e-05,
897
+ "loss": 0.4296,
898
+ "step": 635
899
+ },
900
+ {
901
+ "epoch": 0.5964585274930102,
902
+ "grad_norm": 0.4662472899566146,
903
+ "learning_rate": 4.4511563686572315e-05,
904
+ "loss": 0.4202,
905
+ "step": 640
906
+ },
907
+ {
908
+ "epoch": 0.6011183597390494,
909
+ "grad_norm": 0.39559722373002326,
910
+ "learning_rate": 4.44252675181222e-05,
911
+ "loss": 0.4197,
912
+ "step": 645
913
+ },
914
+ {
915
+ "epoch": 0.6057781919850885,
916
+ "grad_norm": 0.4348073933035661,
917
+ "learning_rate": 4.433897134967208e-05,
918
+ "loss": 0.4284,
919
+ "step": 650
920
+ },
921
+ {
922
+ "epoch": 0.6104380242311277,
923
+ "grad_norm": 0.4064242144273277,
924
+ "learning_rate": 4.4252675181221956e-05,
925
+ "loss": 0.4262,
926
+ "step": 655
927
+ },
928
+ {
929
+ "epoch": 0.6150978564771669,
930
+ "grad_norm": 0.3413504824042106,
931
+ "learning_rate": 4.4166379012771834e-05,
932
+ "loss": 0.408,
933
+ "step": 660
934
+ },
935
+ {
936
+ "epoch": 0.6197576887232059,
937
+ "grad_norm": 0.4625137937805045,
938
+ "learning_rate": 4.408008284432171e-05,
939
+ "loss": 0.4091,
940
+ "step": 665
941
+ },
942
+ {
943
+ "epoch": 0.6244175209692451,
944
+ "grad_norm": 0.4365632325921953,
945
+ "learning_rate": 4.39937866758716e-05,
946
+ "loss": 0.4076,
947
+ "step": 670
948
+ },
949
+ {
950
+ "epoch": 0.6290773532152842,
951
+ "grad_norm": 0.43623665649462795,
952
+ "learning_rate": 4.3907490507421476e-05,
953
+ "loss": 0.4158,
954
+ "step": 675
955
+ },
956
+ {
957
+ "epoch": 0.6337371854613234,
958
+ "grad_norm": 0.4462282373794903,
959
+ "learning_rate": 4.382119433897135e-05,
960
+ "loss": 0.419,
961
+ "step": 680
962
+ },
963
+ {
964
+ "epoch": 0.6383970177073626,
965
+ "grad_norm": 0.4909062825850483,
966
+ "learning_rate": 4.373489817052123e-05,
967
+ "loss": 0.4284,
968
+ "step": 685
969
+ },
970
+ {
971
+ "epoch": 0.6430568499534017,
972
+ "grad_norm": 0.4261067060277007,
973
+ "learning_rate": 4.364860200207111e-05,
974
+ "loss": 0.4108,
975
+ "step": 690
976
+ },
977
+ {
978
+ "epoch": 0.6477166821994408,
979
+ "grad_norm": 0.36806589117120897,
980
+ "learning_rate": 4.356230583362099e-05,
981
+ "loss": 0.4154,
982
+ "step": 695
983
+ },
984
+ {
985
+ "epoch": 0.65237651444548,
986
+ "grad_norm": 0.34856157577107083,
987
+ "learning_rate": 4.347600966517087e-05,
988
+ "loss": 0.4246,
989
+ "step": 700
990
+ },
991
+ {
992
+ "epoch": 0.6570363466915191,
993
+ "grad_norm": 0.35691903362815613,
994
+ "learning_rate": 4.3389713496720745e-05,
995
+ "loss": 0.4178,
996
+ "step": 705
997
+ },
998
+ {
999
+ "epoch": 0.6616961789375583,
1000
+ "grad_norm": 0.4185903662996916,
1001
+ "learning_rate": 4.330341732827063e-05,
1002
+ "loss": 0.4184,
1003
+ "step": 710
1004
+ },
1005
+ {
1006
+ "epoch": 0.6663560111835974,
1007
+ "grad_norm": 0.36798569357808036,
1008
+ "learning_rate": 4.321712115982051e-05,
1009
+ "loss": 0.4067,
1010
+ "step": 715
1011
+ },
1012
+ {
1013
+ "epoch": 0.6710158434296365,
1014
+ "grad_norm": 0.3788649720605493,
1015
+ "learning_rate": 4.3130824991370387e-05,
1016
+ "loss": 0.417,
1017
+ "step": 720
1018
+ },
1019
+ {
1020
+ "epoch": 0.6756756756756757,
1021
+ "grad_norm": 0.33269308559456673,
1022
+ "learning_rate": 4.3044528822920265e-05,
1023
+ "loss": 0.4158,
1024
+ "step": 725
1025
+ },
1026
+ {
1027
+ "epoch": 0.6803355079217148,
1028
+ "grad_norm": 0.41281885956590714,
1029
+ "learning_rate": 4.295823265447014e-05,
1030
+ "loss": 0.4107,
1031
+ "step": 730
1032
+ },
1033
+ {
1034
+ "epoch": 0.684995340167754,
1035
+ "grad_norm": 0.35535706301183545,
1036
+ "learning_rate": 4.287193648602002e-05,
1037
+ "loss": 0.4149,
1038
+ "step": 735
1039
+ },
1040
+ {
1041
+ "epoch": 0.6896551724137931,
1042
+ "grad_norm": 0.3277576836962773,
1043
+ "learning_rate": 4.27856403175699e-05,
1044
+ "loss": 0.4086,
1045
+ "step": 740
1046
+ },
1047
+ {
1048
+ "epoch": 0.6943150046598322,
1049
+ "grad_norm": 0.40279395134887447,
1050
+ "learning_rate": 4.269934414911978e-05,
1051
+ "loss": 0.4043,
1052
+ "step": 745
1053
+ },
1054
+ {
1055
+ "epoch": 0.6989748369058714,
1056
+ "grad_norm": 0.43373381741082817,
1057
+ "learning_rate": 4.261304798066966e-05,
1058
+ "loss": 0.4089,
1059
+ "step": 750
1060
+ },
1061
+ {
1062
+ "epoch": 0.7036346691519105,
1063
+ "grad_norm": 0.36906806847778895,
1064
+ "learning_rate": 4.252675181221954e-05,
1065
+ "loss": 0.4113,
1066
+ "step": 755
1067
+ },
1068
+ {
1069
+ "epoch": 0.7082945013979497,
1070
+ "grad_norm": 0.41940285749229916,
1071
+ "learning_rate": 4.244045564376942e-05,
1072
+ "loss": 0.4145,
1073
+ "step": 760
1074
+ },
1075
+ {
1076
+ "epoch": 0.7129543336439889,
1077
+ "grad_norm": 0.35669549672804485,
1078
+ "learning_rate": 4.23541594753193e-05,
1079
+ "loss": 0.3988,
1080
+ "step": 765
1081
+ },
1082
+ {
1083
+ "epoch": 0.7176141658900279,
1084
+ "grad_norm": 0.3590318963506859,
1085
+ "learning_rate": 4.2267863306869176e-05,
1086
+ "loss": 0.4075,
1087
+ "step": 770
1088
+ },
1089
+ {
1090
+ "epoch": 0.7222739981360671,
1091
+ "grad_norm": 0.40077547109104333,
1092
+ "learning_rate": 4.2181567138419054e-05,
1093
+ "loss": 0.4202,
1094
+ "step": 775
1095
+ },
1096
+ {
1097
+ "epoch": 0.7269338303821062,
1098
+ "grad_norm": 0.37047082422653643,
1099
+ "learning_rate": 4.209527096996894e-05,
1100
+ "loss": 0.4049,
1101
+ "step": 780
1102
+ },
1103
+ {
1104
+ "epoch": 0.7315936626281454,
1105
+ "grad_norm": 0.3795501401345936,
1106
+ "learning_rate": 4.200897480151881e-05,
1107
+ "loss": 0.4121,
1108
+ "step": 785
1109
+ },
1110
+ {
1111
+ "epoch": 0.7362534948741846,
1112
+ "grad_norm": 0.4503984514039821,
1113
+ "learning_rate": 4.1922678633068695e-05,
1114
+ "loss": 0.4152,
1115
+ "step": 790
1116
+ },
1117
+ {
1118
+ "epoch": 0.7409133271202236,
1119
+ "grad_norm": 0.44284905780951017,
1120
+ "learning_rate": 4.1836382464618573e-05,
1121
+ "loss": 0.4098,
1122
+ "step": 795
1123
+ },
1124
+ {
1125
+ "epoch": 0.7455731593662628,
1126
+ "grad_norm": 0.44691031160954076,
1127
+ "learning_rate": 4.175008629616845e-05,
1128
+ "loss": 0.4078,
1129
+ "step": 800
1130
+ },
1131
+ {
1132
+ "epoch": 0.750232991612302,
1133
+ "grad_norm": 0.3735786310769167,
1134
+ "learning_rate": 4.166379012771833e-05,
1135
+ "loss": 0.4077,
1136
+ "step": 805
1137
+ },
1138
+ {
1139
+ "epoch": 0.7548928238583411,
1140
+ "grad_norm": 0.3384286028508436,
1141
+ "learning_rate": 4.157749395926821e-05,
1142
+ "loss": 0.4257,
1143
+ "step": 810
1144
+ },
1145
+ {
1146
+ "epoch": 0.7595526561043803,
1147
+ "grad_norm": 0.38501244831095327,
1148
+ "learning_rate": 4.1491197790818086e-05,
1149
+ "loss": 0.4005,
1150
+ "step": 815
1151
+ },
1152
+ {
1153
+ "epoch": 0.7642124883504194,
1154
+ "grad_norm": 0.6658921381907594,
1155
+ "learning_rate": 4.140490162236797e-05,
1156
+ "loss": 0.4152,
1157
+ "step": 820
1158
+ },
1159
+ {
1160
+ "epoch": 0.7688723205964585,
1161
+ "grad_norm": 0.5108682931365331,
1162
+ "learning_rate": 4.131860545391785e-05,
1163
+ "loss": 0.4078,
1164
+ "step": 825
1165
+ },
1166
+ {
1167
+ "epoch": 0.7735321528424977,
1168
+ "grad_norm": 0.3959267206623357,
1169
+ "learning_rate": 4.123230928546773e-05,
1170
+ "loss": 0.4025,
1171
+ "step": 830
1172
+ },
1173
+ {
1174
+ "epoch": 0.7781919850885368,
1175
+ "grad_norm": 0.40541297925684416,
1176
+ "learning_rate": 4.1146013117017606e-05,
1177
+ "loss": 0.4095,
1178
+ "step": 835
1179
+ },
1180
+ {
1181
+ "epoch": 0.782851817334576,
1182
+ "grad_norm": 0.4483501398906087,
1183
+ "learning_rate": 4.1059716948567484e-05,
1184
+ "loss": 0.4127,
1185
+ "step": 840
1186
+ },
1187
+ {
1188
+ "epoch": 0.7875116495806151,
1189
+ "grad_norm": 0.4577963072705479,
1190
+ "learning_rate": 4.097342078011737e-05,
1191
+ "loss": 0.4204,
1192
+ "step": 845
1193
+ },
1194
+ {
1195
+ "epoch": 0.7921714818266542,
1196
+ "grad_norm": 0.3657002203284406,
1197
+ "learning_rate": 4.088712461166724e-05,
1198
+ "loss": 0.4105,
1199
+ "step": 850
1200
+ },
1201
+ {
1202
+ "epoch": 0.7968313140726934,
1203
+ "grad_norm": 0.5219753962445839,
1204
+ "learning_rate": 4.080082844321712e-05,
1205
+ "loss": 0.4121,
1206
+ "step": 855
1207
+ },
1208
+ {
1209
+ "epoch": 0.8014911463187325,
1210
+ "grad_norm": 0.4051529596962449,
1211
+ "learning_rate": 4.0714532274767004e-05,
1212
+ "loss": 0.4189,
1213
+ "step": 860
1214
+ },
1215
+ {
1216
+ "epoch": 0.8061509785647717,
1217
+ "grad_norm": 0.3645428936825488,
1218
+ "learning_rate": 4.062823610631688e-05,
1219
+ "loss": 0.4003,
1220
+ "step": 865
1221
+ },
1222
+ {
1223
+ "epoch": 0.8108108108108109,
1224
+ "grad_norm": 0.31752471962451867,
1225
+ "learning_rate": 4.054193993786676e-05,
1226
+ "loss": 0.415,
1227
+ "step": 870
1228
+ },
1229
+ {
1230
+ "epoch": 0.8154706430568499,
1231
+ "grad_norm": 0.3601862957329616,
1232
+ "learning_rate": 4.045564376941664e-05,
1233
+ "loss": 0.4112,
1234
+ "step": 875
1235
+ },
1236
+ {
1237
+ "epoch": 0.8201304753028891,
1238
+ "grad_norm": 0.36233941550256943,
1239
+ "learning_rate": 4.036934760096652e-05,
1240
+ "loss": 0.4027,
1241
+ "step": 880
1242
+ },
1243
+ {
1244
+ "epoch": 0.8247903075489282,
1245
+ "grad_norm": 0.41290807812840935,
1246
+ "learning_rate": 4.02830514325164e-05,
1247
+ "loss": 0.4159,
1248
+ "step": 885
1249
+ },
1250
+ {
1251
+ "epoch": 0.8294501397949674,
1252
+ "grad_norm": 0.42156370600929094,
1253
+ "learning_rate": 4.019675526406628e-05,
1254
+ "loss": 0.4026,
1255
+ "step": 890
1256
+ },
1257
+ {
1258
+ "epoch": 0.8341099720410066,
1259
+ "grad_norm": 0.369144224526896,
1260
+ "learning_rate": 4.011045909561615e-05,
1261
+ "loss": 0.4216,
1262
+ "step": 895
1263
+ },
1264
+ {
1265
+ "epoch": 0.8387698042870456,
1266
+ "grad_norm": 0.35301766518057,
1267
+ "learning_rate": 4.0024162927166037e-05,
1268
+ "loss": 0.4047,
1269
+ "step": 900
1270
+ },
1271
+ {
1272
+ "epoch": 0.8434296365330848,
1273
+ "grad_norm": 0.30727777017232927,
1274
+ "learning_rate": 3.9937866758715915e-05,
1275
+ "loss": 0.4061,
1276
+ "step": 905
1277
+ },
1278
+ {
1279
+ "epoch": 0.848089468779124,
1280
+ "grad_norm": 0.4595118441196378,
1281
+ "learning_rate": 3.98515705902658e-05,
1282
+ "loss": 0.4121,
1283
+ "step": 910
1284
+ },
1285
+ {
1286
+ "epoch": 0.8527493010251631,
1287
+ "grad_norm": 0.5868283893854741,
1288
+ "learning_rate": 3.976527442181567e-05,
1289
+ "loss": 0.4051,
1290
+ "step": 915
1291
+ },
1292
+ {
1293
+ "epoch": 0.8574091332712023,
1294
+ "grad_norm": 0.4408220457405354,
1295
+ "learning_rate": 3.967897825336555e-05,
1296
+ "loss": 0.4113,
1297
+ "step": 920
1298
+ },
1299
+ {
1300
+ "epoch": 0.8620689655172413,
1301
+ "grad_norm": 0.329430445296284,
1302
+ "learning_rate": 3.9592682084915434e-05,
1303
+ "loss": 0.398,
1304
+ "step": 925
1305
+ },
1306
+ {
1307
+ "epoch": 0.8667287977632805,
1308
+ "grad_norm": 0.4772951342481958,
1309
+ "learning_rate": 3.950638591646531e-05,
1310
+ "loss": 0.398,
1311
+ "step": 930
1312
+ },
1313
+ {
1314
+ "epoch": 0.8713886300093197,
1315
+ "grad_norm": 0.39009508489962785,
1316
+ "learning_rate": 3.942008974801519e-05,
1317
+ "loss": 0.4091,
1318
+ "step": 935
1319
+ },
1320
+ {
1321
+ "epoch": 0.8760484622553588,
1322
+ "grad_norm": 0.31283951592729364,
1323
+ "learning_rate": 3.933379357956507e-05,
1324
+ "loss": 0.4051,
1325
+ "step": 940
1326
+ },
1327
+ {
1328
+ "epoch": 0.880708294501398,
1329
+ "grad_norm": 0.38362272885626797,
1330
+ "learning_rate": 3.924749741111495e-05,
1331
+ "loss": 0.4072,
1332
+ "step": 945
1333
+ },
1334
+ {
1335
+ "epoch": 0.8853681267474371,
1336
+ "grad_norm": 0.4294812901025146,
1337
+ "learning_rate": 3.916120124266483e-05,
1338
+ "loss": 0.4148,
1339
+ "step": 950
1340
+ },
1341
+ {
1342
+ "epoch": 0.8900279589934762,
1343
+ "grad_norm": 0.4001848027163216,
1344
+ "learning_rate": 3.9074905074214704e-05,
1345
+ "loss": 0.4136,
1346
+ "step": 955
1347
+ },
1348
+ {
1349
+ "epoch": 0.8946877912395154,
1350
+ "grad_norm": 0.34026388057585993,
1351
+ "learning_rate": 3.898860890576458e-05,
1352
+ "loss": 0.4093,
1353
+ "step": 960
1354
+ },
1355
+ {
1356
+ "epoch": 0.8993476234855545,
1357
+ "grad_norm": 0.40668203338539827,
1358
+ "learning_rate": 3.890231273731447e-05,
1359
+ "loss": 0.4008,
1360
+ "step": 965
1361
+ },
1362
+ {
1363
+ "epoch": 0.9040074557315937,
1364
+ "grad_norm": 0.3294333705662259,
1365
+ "learning_rate": 3.8816016568864345e-05,
1366
+ "loss": 0.3987,
1367
+ "step": 970
1368
+ },
1369
+ {
1370
+ "epoch": 0.9086672879776329,
1371
+ "grad_norm": 0.342795942254618,
1372
+ "learning_rate": 3.8729720400414224e-05,
1373
+ "loss": 0.4176,
1374
+ "step": 975
1375
+ },
1376
+ {
1377
+ "epoch": 0.9133271202236719,
1378
+ "grad_norm": 0.39628105185451024,
1379
+ "learning_rate": 3.86434242319641e-05,
1380
+ "loss": 0.4047,
1381
+ "step": 980
1382
+ },
1383
+ {
1384
+ "epoch": 0.9179869524697111,
1385
+ "grad_norm": 0.46631619804138,
1386
+ "learning_rate": 3.855712806351398e-05,
1387
+ "loss": 0.4068,
1388
+ "step": 985
1389
+ },
1390
+ {
1391
+ "epoch": 0.9226467847157502,
1392
+ "grad_norm": 0.43261058596610696,
1393
+ "learning_rate": 3.8470831895063865e-05,
1394
+ "loss": 0.4038,
1395
+ "step": 990
1396
+ },
1397
+ {
1398
+ "epoch": 0.9273066169617894,
1399
+ "grad_norm": 0.37541980348762116,
1400
+ "learning_rate": 3.838453572661374e-05,
1401
+ "loss": 0.3995,
1402
+ "step": 995
1403
+ },
1404
+ {
1405
+ "epoch": 0.9319664492078286,
1406
+ "grad_norm": 0.4184847694680633,
1407
+ "learning_rate": 3.8298239558163615e-05,
1408
+ "loss": 0.4025,
1409
+ "step": 1000
1410
+ },
1411
+ {
1412
+ "epoch": 0.9366262814538676,
1413
+ "grad_norm": 0.3857591059837171,
1414
+ "learning_rate": 3.82119433897135e-05,
1415
+ "loss": 0.4075,
1416
+ "step": 1005
1417
+ },
1418
+ {
1419
+ "epoch": 0.9412861136999068,
1420
+ "grad_norm": 0.39800461331863696,
1421
+ "learning_rate": 3.812564722126338e-05,
1422
+ "loss": 0.4,
1423
+ "step": 1010
1424
+ },
1425
+ {
1426
+ "epoch": 0.9459459459459459,
1427
+ "grad_norm": 0.4143464836173206,
1428
+ "learning_rate": 3.8039351052813256e-05,
1429
+ "loss": 0.4083,
1430
+ "step": 1015
1431
+ },
1432
+ {
1433
+ "epoch": 0.9506057781919851,
1434
+ "grad_norm": 0.3920202302045243,
1435
+ "learning_rate": 3.7953054884363134e-05,
1436
+ "loss": 0.4023,
1437
+ "step": 1020
1438
+ },
1439
+ {
1440
+ "epoch": 0.9552656104380243,
1441
+ "grad_norm": 0.37828355875661107,
1442
+ "learning_rate": 3.786675871591301e-05,
1443
+ "loss": 0.4056,
1444
+ "step": 1025
1445
+ },
1446
+ {
1447
+ "epoch": 0.9599254426840633,
1448
+ "grad_norm": 0.29419352669408066,
1449
+ "learning_rate": 3.77804625474629e-05,
1450
+ "loss": 0.4107,
1451
+ "step": 1030
1452
+ },
1453
+ {
1454
+ "epoch": 0.9645852749301025,
1455
+ "grad_norm": 0.3997612657539297,
1456
+ "learning_rate": 3.7694166379012776e-05,
1457
+ "loss": 0.4031,
1458
+ "step": 1035
1459
+ },
1460
+ {
1461
+ "epoch": 0.9692451071761417,
1462
+ "grad_norm": 0.38608182016741566,
1463
+ "learning_rate": 3.7607870210562654e-05,
1464
+ "loss": 0.4005,
1465
+ "step": 1040
1466
+ },
1467
+ {
1468
+ "epoch": 0.9739049394221808,
1469
+ "grad_norm": 0.28600031302754375,
1470
+ "learning_rate": 3.752157404211253e-05,
1471
+ "loss": 0.3933,
1472
+ "step": 1045
1473
+ },
1474
+ {
1475
+ "epoch": 0.97856477166822,
1476
+ "grad_norm": 0.38107411335734614,
1477
+ "learning_rate": 3.743527787366241e-05,
1478
+ "loss": 0.4225,
1479
+ "step": 1050
1480
+ },
1481
+ {
1482
+ "epoch": 0.983224603914259,
1483
+ "grad_norm": 0.39170807411989667,
1484
+ "learning_rate": 3.734898170521229e-05,
1485
+ "loss": 0.4004,
1486
+ "step": 1055
1487
+ },
1488
+ {
1489
+ "epoch": 0.9878844361602982,
1490
+ "grad_norm": 0.38467780448535566,
1491
+ "learning_rate": 3.7262685536762174e-05,
1492
+ "loss": 0.3997,
1493
+ "step": 1060
1494
+ },
1495
+ {
1496
+ "epoch": 0.9925442684063374,
1497
+ "grad_norm": 0.4020140968286371,
1498
+ "learning_rate": 3.7176389368312045e-05,
1499
+ "loss": 0.4037,
1500
+ "step": 1065
1501
+ },
1502
+ {
1503
+ "epoch": 0.9972041006523765,
1504
+ "grad_norm": 0.46309836470033766,
1505
+ "learning_rate": 3.709009319986193e-05,
1506
+ "loss": 0.4041,
1507
+ "step": 1070
1508
+ },
1509
+ {
1510
+ "epoch": 1.0018639328984156,
1511
+ "grad_norm": 0.3901703886810142,
1512
+ "learning_rate": 3.700379703141181e-05,
1513
+ "loss": 0.369,
1514
+ "step": 1075
1515
+ },
1516
+ {
1517
+ "epoch": 1.0065237651444547,
1518
+ "grad_norm": 0.3010234352246036,
1519
+ "learning_rate": 3.6917500862961687e-05,
1520
+ "loss": 0.3448,
1521
+ "step": 1080
1522
+ },
1523
+ {
1524
+ "epoch": 1.011183597390494,
1525
+ "grad_norm": 0.4157638937857459,
1526
+ "learning_rate": 3.6831204694511565e-05,
1527
+ "loss": 0.3518,
1528
+ "step": 1085
1529
+ },
1530
+ {
1531
+ "epoch": 1.015843429636533,
1532
+ "grad_norm": 0.3603522336344581,
1533
+ "learning_rate": 3.674490852606144e-05,
1534
+ "loss": 0.3586,
1535
+ "step": 1090
1536
+ },
1537
+ {
1538
+ "epoch": 1.0205032618825722,
1539
+ "grad_norm": 0.32822298799590405,
1540
+ "learning_rate": 3.665861235761132e-05,
1541
+ "loss": 0.3447,
1542
+ "step": 1095
1543
+ },
1544
+ {
1545
+ "epoch": 1.0251630941286114,
1546
+ "grad_norm": 0.35038116243974443,
1547
+ "learning_rate": 3.6572316189161206e-05,
1548
+ "loss": 0.337,
1549
+ "step": 1100
1550
+ },
1551
+ {
1552
+ "epoch": 1.0298229263746506,
1553
+ "grad_norm": 0.2841436076230565,
1554
+ "learning_rate": 3.6486020020711085e-05,
1555
+ "loss": 0.343,
1556
+ "step": 1105
1557
+ },
1558
+ {
1559
+ "epoch": 1.0344827586206897,
1560
+ "grad_norm": 0.3116345416367525,
1561
+ "learning_rate": 3.639972385226096e-05,
1562
+ "loss": 0.3432,
1563
+ "step": 1110
1564
+ },
1565
+ {
1566
+ "epoch": 1.0391425908667289,
1567
+ "grad_norm": 0.3151855230791428,
1568
+ "learning_rate": 3.631342768381084e-05,
1569
+ "loss": 0.3431,
1570
+ "step": 1115
1571
+ },
1572
+ {
1573
+ "epoch": 1.0438024231127678,
1574
+ "grad_norm": 0.35993766510002373,
1575
+ "learning_rate": 3.622713151536072e-05,
1576
+ "loss": 0.343,
1577
+ "step": 1120
1578
+ },
1579
+ {
1580
+ "epoch": 1.048462255358807,
1581
+ "grad_norm": 0.32743934813623815,
1582
+ "learning_rate": 3.6140835346910604e-05,
1583
+ "loss": 0.347,
1584
+ "step": 1125
1585
+ },
1586
+ {
1587
+ "epoch": 1.0531220876048462,
1588
+ "grad_norm": 0.3000370756870265,
1589
+ "learning_rate": 3.6054539178460476e-05,
1590
+ "loss": 0.3433,
1591
+ "step": 1130
1592
+ },
1593
+ {
1594
+ "epoch": 1.0577819198508853,
1595
+ "grad_norm": 0.38781790959885876,
1596
+ "learning_rate": 3.5968243010010354e-05,
1597
+ "loss": 0.3594,
1598
+ "step": 1135
1599
+ },
1600
+ {
1601
+ "epoch": 1.0624417520969245,
1602
+ "grad_norm": 0.32014554787819977,
1603
+ "learning_rate": 3.588194684156024e-05,
1604
+ "loss": 0.3503,
1605
+ "step": 1140
1606
+ },
1607
+ {
1608
+ "epoch": 1.0671015843429636,
1609
+ "grad_norm": 0.370735809498283,
1610
+ "learning_rate": 3.579565067311012e-05,
1611
+ "loss": 0.3417,
1612
+ "step": 1145
1613
+ },
1614
+ {
1615
+ "epoch": 1.0717614165890028,
1616
+ "grad_norm": 0.3024601758163409,
1617
+ "learning_rate": 3.5709354504659995e-05,
1618
+ "loss": 0.3385,
1619
+ "step": 1150
1620
+ },
1621
+ {
1622
+ "epoch": 1.076421248835042,
1623
+ "grad_norm": 0.3396899881369013,
1624
+ "learning_rate": 3.5623058336209874e-05,
1625
+ "loss": 0.3496,
1626
+ "step": 1155
1627
+ },
1628
+ {
1629
+ "epoch": 1.0810810810810811,
1630
+ "grad_norm": 0.28870357807743696,
1631
+ "learning_rate": 3.553676216775975e-05,
1632
+ "loss": 0.3406,
1633
+ "step": 1160
1634
+ },
1635
+ {
1636
+ "epoch": 1.0857409133271203,
1637
+ "grad_norm": 0.28568156626690694,
1638
+ "learning_rate": 3.545046599930964e-05,
1639
+ "loss": 0.3523,
1640
+ "step": 1165
1641
+ },
1642
+ {
1643
+ "epoch": 1.0904007455731595,
1644
+ "grad_norm": 0.27294319365310815,
1645
+ "learning_rate": 3.536416983085951e-05,
1646
+ "loss": 0.3537,
1647
+ "step": 1170
1648
+ },
1649
+ {
1650
+ "epoch": 1.0950605778191984,
1651
+ "grad_norm": 0.36694769383304165,
1652
+ "learning_rate": 3.5277873662409386e-05,
1653
+ "loss": 0.3403,
1654
+ "step": 1175
1655
+ },
1656
+ {
1657
+ "epoch": 1.0997204100652376,
1658
+ "grad_norm": 0.33630445896051475,
1659
+ "learning_rate": 3.519157749395927e-05,
1660
+ "loss": 0.3465,
1661
+ "step": 1180
1662
+ },
1663
+ {
1664
+ "epoch": 1.1043802423112767,
1665
+ "grad_norm": 0.4121586071124287,
1666
+ "learning_rate": 3.510528132550915e-05,
1667
+ "loss": 0.3436,
1668
+ "step": 1185
1669
+ },
1670
+ {
1671
+ "epoch": 1.109040074557316,
1672
+ "grad_norm": 0.3107462600176289,
1673
+ "learning_rate": 3.501898515705903e-05,
1674
+ "loss": 0.3455,
1675
+ "step": 1190
1676
+ },
1677
+ {
1678
+ "epoch": 1.113699906803355,
1679
+ "grad_norm": 0.32616980094028847,
1680
+ "learning_rate": 3.4932688988608906e-05,
1681
+ "loss": 0.3569,
1682
+ "step": 1195
1683
+ },
1684
+ {
1685
+ "epoch": 1.1183597390493942,
1686
+ "grad_norm": 0.5721259222478717,
1687
+ "learning_rate": 3.4846392820158784e-05,
1688
+ "loss": 0.3462,
1689
+ "step": 1200
1690
+ },
1691
+ {
1692
+ "epoch": 1.1230195712954334,
1693
+ "grad_norm": 0.39091963037590294,
1694
+ "learning_rate": 3.476009665170867e-05,
1695
+ "loss": 0.3458,
1696
+ "step": 1205
1697
+ },
1698
+ {
1699
+ "epoch": 1.1276794035414726,
1700
+ "grad_norm": 0.3647869778433765,
1701
+ "learning_rate": 3.467380048325855e-05,
1702
+ "loss": 0.3463,
1703
+ "step": 1210
1704
+ },
1705
+ {
1706
+ "epoch": 1.1323392357875117,
1707
+ "grad_norm": 0.3278226928089527,
1708
+ "learning_rate": 3.458750431480842e-05,
1709
+ "loss": 0.3511,
1710
+ "step": 1215
1711
+ },
1712
+ {
1713
+ "epoch": 1.1369990680335509,
1714
+ "grad_norm": 0.36472407535793705,
1715
+ "learning_rate": 3.4501208146358304e-05,
1716
+ "loss": 0.3507,
1717
+ "step": 1220
1718
+ },
1719
+ {
1720
+ "epoch": 1.14165890027959,
1721
+ "grad_norm": 0.3162625401383028,
1722
+ "learning_rate": 3.441491197790818e-05,
1723
+ "loss": 0.3465,
1724
+ "step": 1225
1725
+ },
1726
+ {
1727
+ "epoch": 1.146318732525629,
1728
+ "grad_norm": 0.2935130903926503,
1729
+ "learning_rate": 3.432861580945806e-05,
1730
+ "loss": 0.3474,
1731
+ "step": 1230
1732
+ },
1733
+ {
1734
+ "epoch": 1.1509785647716682,
1735
+ "grad_norm": 0.34052282866497324,
1736
+ "learning_rate": 3.424231964100794e-05,
1737
+ "loss": 0.3463,
1738
+ "step": 1235
1739
+ },
1740
+ {
1741
+ "epoch": 1.1556383970177073,
1742
+ "grad_norm": 0.36877838244359007,
1743
+ "learning_rate": 3.415602347255782e-05,
1744
+ "loss": 0.3453,
1745
+ "step": 1240
1746
+ },
1747
+ {
1748
+ "epoch": 1.1602982292637465,
1749
+ "grad_norm": 0.2733712910566977,
1750
+ "learning_rate": 3.40697273041077e-05,
1751
+ "loss": 0.3519,
1752
+ "step": 1245
1753
+ },
1754
+ {
1755
+ "epoch": 1.1649580615097856,
1756
+ "grad_norm": 0.37390448821752814,
1757
+ "learning_rate": 3.398343113565758e-05,
1758
+ "loss": 0.3457,
1759
+ "step": 1250
1760
+ },
1761
+ {
1762
+ "epoch": 1.1696178937558248,
1763
+ "grad_norm": 0.2862398262715606,
1764
+ "learning_rate": 3.389713496720746e-05,
1765
+ "loss": 0.3254,
1766
+ "step": 1255
1767
+ },
1768
+ {
1769
+ "epoch": 1.174277726001864,
1770
+ "grad_norm": 0.27627811665115726,
1771
+ "learning_rate": 3.381083879875734e-05,
1772
+ "loss": 0.3449,
1773
+ "step": 1260
1774
+ },
1775
+ {
1776
+ "epoch": 1.1789375582479031,
1777
+ "grad_norm": 0.2984551216682011,
1778
+ "learning_rate": 3.3724542630307215e-05,
1779
+ "loss": 0.3412,
1780
+ "step": 1265
1781
+ },
1782
+ {
1783
+ "epoch": 1.1835973904939423,
1784
+ "grad_norm": 0.3117052887160424,
1785
+ "learning_rate": 3.363824646185709e-05,
1786
+ "loss": 0.3501,
1787
+ "step": 1270
1788
+ },
1789
+ {
1790
+ "epoch": 1.1882572227399812,
1791
+ "grad_norm": 0.26523368148938603,
1792
+ "learning_rate": 3.355195029340698e-05,
1793
+ "loss": 0.3443,
1794
+ "step": 1275
1795
+ },
1796
+ {
1797
+ "epoch": 1.1929170549860204,
1798
+ "grad_norm": 0.3235527702018126,
1799
+ "learning_rate": 3.346565412495685e-05,
1800
+ "loss": 0.3544,
1801
+ "step": 1280
1802
+ },
1803
+ {
1804
+ "epoch": 1.1975768872320596,
1805
+ "grad_norm": 0.33231065381424213,
1806
+ "learning_rate": 3.3379357956506735e-05,
1807
+ "loss": 0.3557,
1808
+ "step": 1285
1809
+ },
1810
+ {
1811
+ "epoch": 1.2022367194780987,
1812
+ "grad_norm": 0.33109896147037454,
1813
+ "learning_rate": 3.329306178805661e-05,
1814
+ "loss": 0.3391,
1815
+ "step": 1290
1816
+ },
1817
+ {
1818
+ "epoch": 1.206896551724138,
1819
+ "grad_norm": 0.29911644384621444,
1820
+ "learning_rate": 3.320676561960649e-05,
1821
+ "loss": 0.3439,
1822
+ "step": 1295
1823
+ },
1824
+ {
1825
+ "epoch": 1.211556383970177,
1826
+ "grad_norm": 0.4166015301847235,
1827
+ "learning_rate": 3.312046945115637e-05,
1828
+ "loss": 0.352,
1829
+ "step": 1300
1830
+ },
1831
+ {
1832
+ "epoch": 1.2162162162162162,
1833
+ "grad_norm": 0.40766415919978594,
1834
+ "learning_rate": 3.303417328270625e-05,
1835
+ "loss": 0.3509,
1836
+ "step": 1305
1837
+ },
1838
+ {
1839
+ "epoch": 1.2208760484622554,
1840
+ "grad_norm": 0.32382906649763094,
1841
+ "learning_rate": 3.2947877114256126e-05,
1842
+ "loss": 0.34,
1843
+ "step": 1310
1844
+ },
1845
+ {
1846
+ "epoch": 1.2255358807082946,
1847
+ "grad_norm": 0.30767189965326197,
1848
+ "learning_rate": 3.286158094580601e-05,
1849
+ "loss": 0.3602,
1850
+ "step": 1315
1851
+ },
1852
+ {
1853
+ "epoch": 1.2301957129543337,
1854
+ "grad_norm": 0.31880798888411954,
1855
+ "learning_rate": 3.277528477735589e-05,
1856
+ "loss": 0.3458,
1857
+ "step": 1320
1858
+ },
1859
+ {
1860
+ "epoch": 1.2348555452003729,
1861
+ "grad_norm": 0.31313877181562205,
1862
+ "learning_rate": 3.268898860890577e-05,
1863
+ "loss": 0.3526,
1864
+ "step": 1325
1865
+ },
1866
+ {
1867
+ "epoch": 1.2395153774464118,
1868
+ "grad_norm": 0.2890512077214384,
1869
+ "learning_rate": 3.2602692440455645e-05,
1870
+ "loss": 0.3408,
1871
+ "step": 1330
1872
+ },
1873
+ {
1874
+ "epoch": 1.244175209692451,
1875
+ "grad_norm": 0.2836812272018177,
1876
+ "learning_rate": 3.2516396272005524e-05,
1877
+ "loss": 0.3434,
1878
+ "step": 1335
1879
+ },
1880
+ {
1881
+ "epoch": 1.2488350419384902,
1882
+ "grad_norm": 0.4540592435912553,
1883
+ "learning_rate": 3.243010010355541e-05,
1884
+ "loss": 0.3492,
1885
+ "step": 1340
1886
+ },
1887
+ {
1888
+ "epoch": 1.2534948741845293,
1889
+ "grad_norm": 0.3702760451037345,
1890
+ "learning_rate": 3.234380393510528e-05,
1891
+ "loss": 0.3368,
1892
+ "step": 1345
1893
+ },
1894
+ {
1895
+ "epoch": 1.2581547064305685,
1896
+ "grad_norm": 0.2917660806063631,
1897
+ "learning_rate": 3.225750776665516e-05,
1898
+ "loss": 0.3437,
1899
+ "step": 1350
1900
+ },
1901
+ {
1902
+ "epoch": 1.2628145386766076,
1903
+ "grad_norm": 0.3005932483580072,
1904
+ "learning_rate": 3.217121159820504e-05,
1905
+ "loss": 0.3533,
1906
+ "step": 1355
1907
+ },
1908
+ {
1909
+ "epoch": 1.2674743709226468,
1910
+ "grad_norm": 0.31926938268885113,
1911
+ "learning_rate": 3.208491542975492e-05,
1912
+ "loss": 0.3433,
1913
+ "step": 1360
1914
+ },
1915
+ {
1916
+ "epoch": 1.272134203168686,
1917
+ "grad_norm": 0.31462085002303564,
1918
+ "learning_rate": 3.19986192613048e-05,
1919
+ "loss": 0.3484,
1920
+ "step": 1365
1921
+ },
1922
+ {
1923
+ "epoch": 1.2767940354147251,
1924
+ "grad_norm": 0.3668129958844129,
1925
+ "learning_rate": 3.191232309285468e-05,
1926
+ "loss": 0.3473,
1927
+ "step": 1370
1928
+ },
1929
+ {
1930
+ "epoch": 1.281453867660764,
1931
+ "grad_norm": 0.36011114846832903,
1932
+ "learning_rate": 3.1826026924404556e-05,
1933
+ "loss": 0.3374,
1934
+ "step": 1375
1935
+ },
1936
+ {
1937
+ "epoch": 1.2861136999068035,
1938
+ "grad_norm": 0.3707136617543373,
1939
+ "learning_rate": 3.173973075595444e-05,
1940
+ "loss": 0.3519,
1941
+ "step": 1380
1942
+ },
1943
+ {
1944
+ "epoch": 1.2907735321528424,
1945
+ "grad_norm": 0.31634559612246044,
1946
+ "learning_rate": 3.165343458750431e-05,
1947
+ "loss": 0.3532,
1948
+ "step": 1385
1949
+ },
1950
+ {
1951
+ "epoch": 1.2954333643988816,
1952
+ "grad_norm": 0.36512675923388166,
1953
+ "learning_rate": 3.156713841905419e-05,
1954
+ "loss": 0.344,
1955
+ "step": 1390
1956
+ },
1957
+ {
1958
+ "epoch": 1.3000931966449207,
1959
+ "grad_norm": 0.2724467755048477,
1960
+ "learning_rate": 3.1480842250604076e-05,
1961
+ "loss": 0.3483,
1962
+ "step": 1395
1963
+ },
1964
+ {
1965
+ "epoch": 1.30475302889096,
1966
+ "grad_norm": 0.360595305928704,
1967
+ "learning_rate": 3.1394546082153954e-05,
1968
+ "loss": 0.3423,
1969
+ "step": 1400
1970
+ },
1971
+ {
1972
+ "epoch": 1.309412861136999,
1973
+ "grad_norm": 0.331462059138007,
1974
+ "learning_rate": 3.130824991370383e-05,
1975
+ "loss": 0.3533,
1976
+ "step": 1405
1977
+ },
1978
+ {
1979
+ "epoch": 1.3140726933830382,
1980
+ "grad_norm": 0.3123108183369381,
1981
+ "learning_rate": 3.122195374525371e-05,
1982
+ "loss": 0.3412,
1983
+ "step": 1410
1984
+ },
1985
+ {
1986
+ "epoch": 1.3187325256290774,
1987
+ "grad_norm": 0.30675615259167105,
1988
+ "learning_rate": 3.113565757680359e-05,
1989
+ "loss": 0.3486,
1990
+ "step": 1415
1991
+ },
1992
+ {
1993
+ "epoch": 1.3233923578751166,
1994
+ "grad_norm": 0.3247753979750987,
1995
+ "learning_rate": 3.1049361408353474e-05,
1996
+ "loss": 0.336,
1997
+ "step": 1420
1998
+ },
1999
+ {
2000
+ "epoch": 1.3280521901211557,
2001
+ "grad_norm": 0.24573704166768065,
2002
+ "learning_rate": 3.096306523990335e-05,
2003
+ "loss": 0.3439,
2004
+ "step": 1425
2005
+ },
2006
+ {
2007
+ "epoch": 1.3327120223671947,
2008
+ "grad_norm": 0.2784691576334795,
2009
+ "learning_rate": 3.0876769071453223e-05,
2010
+ "loss": 0.3523,
2011
+ "step": 1430
2012
+ },
2013
+ {
2014
+ "epoch": 1.337371854613234,
2015
+ "grad_norm": 0.3279920083531312,
2016
+ "learning_rate": 3.079047290300311e-05,
2017
+ "loss": 0.3504,
2018
+ "step": 1435
2019
+ },
2020
+ {
2021
+ "epoch": 1.342031686859273,
2022
+ "grad_norm": 0.630072707291437,
2023
+ "learning_rate": 3.070417673455299e-05,
2024
+ "loss": 0.3508,
2025
+ "step": 1440
2026
+ },
2027
+ {
2028
+ "epoch": 1.3466915191053122,
2029
+ "grad_norm": 0.3062935559964653,
2030
+ "learning_rate": 3.061788056610287e-05,
2031
+ "loss": 0.3534,
2032
+ "step": 1445
2033
+ },
2034
+ {
2035
+ "epoch": 1.3513513513513513,
2036
+ "grad_norm": 0.34136097201146864,
2037
+ "learning_rate": 3.053158439765274e-05,
2038
+ "loss": 0.3395,
2039
+ "step": 1450
2040
+ },
2041
+ {
2042
+ "epoch": 1.3560111835973905,
2043
+ "grad_norm": 0.3051224256041293,
2044
+ "learning_rate": 3.0445288229202625e-05,
2045
+ "loss": 0.3469,
2046
+ "step": 1455
2047
+ },
2048
+ {
2049
+ "epoch": 1.3606710158434296,
2050
+ "grad_norm": 0.2975038729445838,
2051
+ "learning_rate": 3.0358992060752506e-05,
2052
+ "loss": 0.3529,
2053
+ "step": 1460
2054
+ },
2055
+ {
2056
+ "epoch": 1.3653308480894688,
2057
+ "grad_norm": 0.31823310979778036,
2058
+ "learning_rate": 3.027269589230238e-05,
2059
+ "loss": 0.347,
2060
+ "step": 1465
2061
+ },
2062
+ {
2063
+ "epoch": 1.369990680335508,
2064
+ "grad_norm": 0.2896430196330622,
2065
+ "learning_rate": 3.018639972385226e-05,
2066
+ "loss": 0.3439,
2067
+ "step": 1470
2068
+ },
2069
+ {
2070
+ "epoch": 1.3746505125815471,
2071
+ "grad_norm": 0.352875453228656,
2072
+ "learning_rate": 3.010010355540214e-05,
2073
+ "loss": 0.346,
2074
+ "step": 1475
2075
+ },
2076
+ {
2077
+ "epoch": 1.3793103448275863,
2078
+ "grad_norm": 0.25417462359338994,
2079
+ "learning_rate": 3.001380738695202e-05,
2080
+ "loss": 0.3302,
2081
+ "step": 1480
2082
+ },
2083
+ {
2084
+ "epoch": 1.3839701770736252,
2085
+ "grad_norm": 0.2981082945058558,
2086
+ "learning_rate": 2.99275112185019e-05,
2087
+ "loss": 0.3493,
2088
+ "step": 1485
2089
+ },
2090
+ {
2091
+ "epoch": 1.3886300093196646,
2092
+ "grad_norm": 0.3626842220779335,
2093
+ "learning_rate": 2.984121505005178e-05,
2094
+ "loss": 0.3522,
2095
+ "step": 1490
2096
+ },
2097
+ {
2098
+ "epoch": 1.3932898415657036,
2099
+ "grad_norm": 0.34072090786926984,
2100
+ "learning_rate": 2.9754918881601657e-05,
2101
+ "loss": 0.3605,
2102
+ "step": 1495
2103
+ },
2104
+ {
2105
+ "epoch": 1.3979496738117427,
2106
+ "grad_norm": 0.36566049127137545,
2107
+ "learning_rate": 2.966862271315154e-05,
2108
+ "loss": 0.3572,
2109
+ "step": 1500
2110
+ },
2111
+ {
2112
+ "epoch": 1.402609506057782,
2113
+ "grad_norm": 0.30367298168910534,
2114
+ "learning_rate": 2.9582326544701417e-05,
2115
+ "loss": 0.3503,
2116
+ "step": 1505
2117
+ },
2118
+ {
2119
+ "epoch": 1.407269338303821,
2120
+ "grad_norm": 0.2828621496023037,
2121
+ "learning_rate": 2.9496030376251292e-05,
2122
+ "loss": 0.3454,
2123
+ "step": 1510
2124
+ },
2125
+ {
2126
+ "epoch": 1.4119291705498602,
2127
+ "grad_norm": 0.3069391721232517,
2128
+ "learning_rate": 2.9409734207801177e-05,
2129
+ "loss": 0.3503,
2130
+ "step": 1515
2131
+ },
2132
+ {
2133
+ "epoch": 1.4165890027958994,
2134
+ "grad_norm": 0.37676918497607415,
2135
+ "learning_rate": 2.9323438039351052e-05,
2136
+ "loss": 0.3483,
2137
+ "step": 1520
2138
+ },
2139
+ {
2140
+ "epoch": 1.4212488350419386,
2141
+ "grad_norm": 0.3439297031393127,
2142
+ "learning_rate": 2.9237141870900937e-05,
2143
+ "loss": 0.3447,
2144
+ "step": 1525
2145
+ },
2146
+ {
2147
+ "epoch": 1.4259086672879777,
2148
+ "grad_norm": 0.3359348980856527,
2149
+ "learning_rate": 2.9150845702450812e-05,
2150
+ "loss": 0.3434,
2151
+ "step": 1530
2152
+ },
2153
+ {
2154
+ "epoch": 1.4305684995340169,
2155
+ "grad_norm": 0.3706215198106378,
2156
+ "learning_rate": 2.906454953400069e-05,
2157
+ "loss": 0.3481,
2158
+ "step": 1535
2159
+ },
2160
+ {
2161
+ "epoch": 1.4352283317800558,
2162
+ "grad_norm": 0.26527833144434804,
2163
+ "learning_rate": 2.897825336555057e-05,
2164
+ "loss": 0.3443,
2165
+ "step": 1540
2166
+ },
2167
+ {
2168
+ "epoch": 1.439888164026095,
2169
+ "grad_norm": 0.35150178535932075,
2170
+ "learning_rate": 2.889195719710045e-05,
2171
+ "loss": 0.3446,
2172
+ "step": 1545
2173
+ },
2174
+ {
2175
+ "epoch": 1.4445479962721341,
2176
+ "grad_norm": 0.34068866122527197,
2177
+ "learning_rate": 2.8805661028650328e-05,
2178
+ "loss": 0.341,
2179
+ "step": 1550
2180
+ },
2181
+ {
2182
+ "epoch": 1.4492078285181733,
2183
+ "grad_norm": 0.44905663737611096,
2184
+ "learning_rate": 2.871936486020021e-05,
2185
+ "loss": 0.3386,
2186
+ "step": 1555
2187
+ },
2188
+ {
2189
+ "epoch": 1.4538676607642125,
2190
+ "grad_norm": 0.31579368636055327,
2191
+ "learning_rate": 2.8633068691750088e-05,
2192
+ "loss": 0.341,
2193
+ "step": 1560
2194
+ },
2195
+ {
2196
+ "epoch": 1.4585274930102516,
2197
+ "grad_norm": 0.31166330874399784,
2198
+ "learning_rate": 2.854677252329997e-05,
2199
+ "loss": 0.3434,
2200
+ "step": 1565
2201
+ },
2202
+ {
2203
+ "epoch": 1.4631873252562908,
2204
+ "grad_norm": 0.3677885578765502,
2205
+ "learning_rate": 2.8460476354849848e-05,
2206
+ "loss": 0.3502,
2207
+ "step": 1570
2208
+ },
2209
+ {
2210
+ "epoch": 1.46784715750233,
2211
+ "grad_norm": 0.3763718138729198,
2212
+ "learning_rate": 2.8374180186399723e-05,
2213
+ "loss": 0.3501,
2214
+ "step": 1575
2215
+ },
2216
+ {
2217
+ "epoch": 1.4725069897483691,
2218
+ "grad_norm": 0.3319071868875067,
2219
+ "learning_rate": 2.8287884017949608e-05,
2220
+ "loss": 0.3513,
2221
+ "step": 1580
2222
+ },
2223
+ {
2224
+ "epoch": 1.477166821994408,
2225
+ "grad_norm": 0.35758179709780585,
2226
+ "learning_rate": 2.8201587849499482e-05,
2227
+ "loss": 0.3444,
2228
+ "step": 1585
2229
+ },
2230
+ {
2231
+ "epoch": 1.4818266542404475,
2232
+ "grad_norm": 0.33577991103004173,
2233
+ "learning_rate": 2.811529168104936e-05,
2234
+ "loss": 0.3545,
2235
+ "step": 1590
2236
+ },
2237
+ {
2238
+ "epoch": 1.4864864864864864,
2239
+ "grad_norm": 0.3025741672240685,
2240
+ "learning_rate": 2.8028995512599242e-05,
2241
+ "loss": 0.3453,
2242
+ "step": 1595
2243
+ },
2244
+ {
2245
+ "epoch": 1.4911463187325256,
2246
+ "grad_norm": 0.3828036069686848,
2247
+ "learning_rate": 2.794269934414912e-05,
2248
+ "loss": 0.3472,
2249
+ "step": 1600
2250
+ },
2251
+ {
2252
+ "epoch": 1.4958061509785647,
2253
+ "grad_norm": 0.3043778519192715,
2254
+ "learning_rate": 2.7856403175699002e-05,
2255
+ "loss": 0.3507,
2256
+ "step": 1605
2257
+ },
2258
+ {
2259
+ "epoch": 1.500465983224604,
2260
+ "grad_norm": 0.3382233040513506,
2261
+ "learning_rate": 2.777010700724888e-05,
2262
+ "loss": 0.3461,
2263
+ "step": 1610
2264
+ },
2265
+ {
2266
+ "epoch": 1.505125815470643,
2267
+ "grad_norm": 0.33027493167325966,
2268
+ "learning_rate": 2.768381083879876e-05,
2269
+ "loss": 0.3412,
2270
+ "step": 1615
2271
+ },
2272
+ {
2273
+ "epoch": 1.5097856477166822,
2274
+ "grad_norm": 0.28284106409517795,
2275
+ "learning_rate": 2.759751467034864e-05,
2276
+ "loss": 0.3434,
2277
+ "step": 1620
2278
+ },
2279
+ {
2280
+ "epoch": 1.5144454799627214,
2281
+ "grad_norm": 0.27285762390023743,
2282
+ "learning_rate": 2.751121850189852e-05,
2283
+ "loss": 0.3381,
2284
+ "step": 1625
2285
+ },
2286
+ {
2287
+ "epoch": 1.5191053122087603,
2288
+ "grad_norm": 0.2856683184270901,
2289
+ "learning_rate": 2.7424922333448393e-05,
2290
+ "loss": 0.3312,
2291
+ "step": 1630
2292
+ },
2293
+ {
2294
+ "epoch": 1.5237651444547997,
2295
+ "grad_norm": 0.32602889682943975,
2296
+ "learning_rate": 2.7338626164998278e-05,
2297
+ "loss": 0.3384,
2298
+ "step": 1635
2299
+ },
2300
+ {
2301
+ "epoch": 1.5284249767008387,
2302
+ "grad_norm": 0.3112657240375754,
2303
+ "learning_rate": 2.7252329996548153e-05,
2304
+ "loss": 0.3412,
2305
+ "step": 1640
2306
+ },
2307
+ {
2308
+ "epoch": 1.533084808946878,
2309
+ "grad_norm": 0.26091256859148315,
2310
+ "learning_rate": 2.7166033828098038e-05,
2311
+ "loss": 0.3566,
2312
+ "step": 1645
2313
+ },
2314
+ {
2315
+ "epoch": 1.537744641192917,
2316
+ "grad_norm": 0.3123052376838657,
2317
+ "learning_rate": 2.7079737659647913e-05,
2318
+ "loss": 0.3455,
2319
+ "step": 1650
2320
+ }
2321
+ ],
2322
+ "logging_steps": 5,
2323
+ "max_steps": 3219,
2324
+ "num_input_tokens_seen": 0,
2325
+ "num_train_epochs": 3,
2326
+ "save_steps": 550,
2327
+ "stateful_callbacks": {
2328
+ "TrainerControl": {
2329
+ "args": {
2330
+ "should_epoch_stop": false,
2331
+ "should_evaluate": false,
2332
+ "should_log": false,
2333
+ "should_save": true,
2334
+ "should_training_stop": false
2335
+ },
2336
+ "attributes": {}
2337
+ }
2338
+ },
2339
+ "total_flos": 1.412694515424166e+18,
2340
+ "train_batch_size": 1,
2341
+ "trial_name": null,
2342
+ "trial_params": null
2343
+ }
checkpoint-1650/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3046f52588a443b20a3609c281264c201765ee86ad14b8ee06a6c419a206096
3
+ size 7480
checkpoint-1650/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1650/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)