Commit
·
f1d44bc
1
Parent(s):
4f66849
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
This is a LORA for stable diffusion 1.5, that improves the generation quality at 4 steps. It uses direct backpropogation and HPSV2 reward scoring.
|
| 2 |
+
|
| 3 |
+
It can generate decent quality images at only 4 inference steps.
|
| 4 |
+
|
| 5 |
+

|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
Load with LCM https://huggingface.co/latent-consistency/lcm-lora-sdv1-5
|
| 9 |
+
|
| 10 |
+
Like this:
|
| 11 |
+
|
| 12 |
+
```
|
| 13 |
+
import torch
|
| 14 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
| 15 |
+
|
| 16 |
+
model_id = "Lykon/dreamshaper-7"
|
| 17 |
+
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
|
| 18 |
+
|
| 19 |
+
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
| 20 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 21 |
+
pipe.to("cuda")
|
| 22 |
+
|
| 23 |
+
# load and fuse lcm lora
|
| 24 |
+
pipe.load_lora_weights(adapter_id)
|
| 25 |
+
pipe.fuse_lora()
|
| 26 |
+
|
| 27 |
+
# load and fuse my lcm-lora-hpsv2 lora
|
| 28 |
+
pipe.load_lora_weights("adams-story/lcm-lora-hpsv2-rl")
|
| 29 |
+
pipe.fuse_lora()
|
| 30 |
+
|
| 31 |
+
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
| 32 |
+
|
| 33 |
+
# disable guidance_scale by passing 0
|
| 34 |
+
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
| 35 |
+
```
|