aicinema69 commited on
Commit
3bf3603
·
verified ·
1 Parent(s): 2739cae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -164
README.md CHANGED
@@ -1,199 +1,117 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
 
 
 
 
 
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
 
 
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
 
 
 
 
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
 
 
 
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - emotion-detection
5
+ - audio-emotion-detection
6
+ base_model:
7
+ - MIT/ast-finetuned-audioset-14-14-0.443
8
+ pipeline_tag: audio-classification
9
  ---
10
 
11
+ ## 📊 Model Performance
12
 
13
+ | Metric | Score |
14
+ |------------|-----------|
15
+ | Accuracy | 0.38 |
16
+ | Precision | 0.3075 |
17
+ | Recall | 0.38 |
18
+ | F1-Score | 0.2871 |
19
 
20
+ > **Note**: This model is a first iteration and may benefit from further fine-tuning and data augmentation.
21
 
22
+ ---
23
 
24
+ ## 🗂️ Emotion Classes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ The model classifies audio samples into the following 9 emotions:
27
 
28
+ ```
29
+ 0 - angry
30
+ 1 - apologetic
31
+ 2 - base
32
+ 3 - calm
33
+ 4 - excited
34
+ 5 - fear
35
+ 6 - happy
36
+ 7 - sad
37
+ 8 - surprise
38
+ ```
39
 
40
+ ---
 
 
 
 
41
 
42
+ ## 🏋️‍♂️ Training Details
43
 
44
+ - **Dataset**: Custom dataset with `audio_path` and `emotion` columns.
45
+ - **Sampling Rate**: Resampled to 16kHz
46
+ - **Max Audio Length**: 10 seconds
47
+ - **Training Epochs**: 2
48
+ - **Training/Validation Split**: 80/20
49
+ - **Optimization**: AdamW
50
+ - **Precision**: Full (fp32)
51
 
52
+ ---
53
 
54
+ ## 🧪 Training Logs (Loss)
55
 
56
+ | Step | Training Loss | Validation Loss |
57
+ |------|----------------|------------------|
58
+ | 0 | 2.23 | 1.91 |
59
+ | 350 | 0.88 | 0.86 |
60
+ | 525 | 0.98 | 0.53 |
61
+ | 750 | 0.22 | 0.35 |
62
+ | 1125 | 0.25 | 0.30 |
63
 
64
+ > Full logs available in training script output.
65
 
66
+ ---
67
 
68
+ ## 🚀 Usage
69
 
70
+ ```python
71
+ from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
72
+ import torchaudio
73
 
74
+ model = AutoModelForAudioClassification.from_pretrained("aicinema69/audio-emotion-detector-v1.0")
75
+ feature_extractor = AutoFeatureExtractor.from_pretrained("aicinema69/audio-emotion-detector-v1.0")
76
 
77
+ # Load your audio (16kHz recommended)
78
+ waveform, sample_rate = torchaudio.load("your_audio.wav")
79
 
80
+ # Preprocess
81
+ inputs = feature_extractor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt", padding=True)
82
 
83
+ # Predict
84
+ with torch.no_grad():
85
+ logits = model(**inputs).logits
86
+ predicted_class = logits.argmax(-1).item()
87
 
88
+ print("Predicted emotion:", model.config.id2label[predicted_class])
89
+ ```
90
 
91
+ ---
92
 
93
+ ## 🛠️ Model Card Notes
94
 
95
+ - You **should fine-tune this model on your downstream task** for better performance.
96
+ - Feature extractor is stored in `trainer.tokenizer` (note: `tokenizer` is deprecated in future 🤗 releases, use `processing_class`).
97
+ - Model and extractor pushed to Hub using `push_to_hub`.
98
 
99
+ ---
100
 
101
+ ## 📦 Deployment
102
 
103
+ After training:
104
+ ```python
105
+ model.push_to_hub("aicinema69/audio-emotion-detector-v1.0")
106
+ feature_extractor.push_to_hub("aicinema69/audio-emotion-detector-v1.0")
107
+ ```
108
 
109
+ ---
110
 
111
+ ## ✍️ Author
112
 
113
+ Satyam Singh
114
+ GitHub: [SatyamSingh8306](https://github.com/SatyamSingh8306)
115
+ Hugging Face: [aicinema69](https://huggingface.co/aicinema69)
116
 
117
+ ---