masoudkaviani commited on
Commit
9d6937c
·
verified ·
1 Parent(s): 17ddad0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -13
README.md CHANGED
@@ -20,18 +20,6 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset.
22
 
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
-
35
  ## Training procedure
36
 
37
  ### Training hyperparameters
@@ -47,9 +35,39 @@ The following hyperparameters were used during training:
47
  - training_steps: 4000
48
  - mixed_precision_training: Native AMP
49
 
50
- ### Training results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
 
 
52
 
 
53
 
54
  ### Framework versions
55
 
 
20
 
21
  This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset.
22
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ## Training procedure
24
 
25
  ### Training hyperparameters
 
35
  - training_steps: 4000
36
  - mixed_precision_training: Native AMP
37
 
38
+ ### test results
39
+
40
+ - Best test WER (Word Error Rate): 0.547
41
+ - Best test CER (Character Error Rate): 0.227
42
+
43
+ ### Usage
44
+ ```python
45
+ import torch
46
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
47
+
48
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
49
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
50
+
51
+ model_id = "aictsharif/whisper-base-fa"
52
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
53
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
54
+ )
55
+ model.to(device)
56
+
57
+ processor = AutoProcessor.from_pretrained(model_id)
58
+ pipe = pipeline(
59
+ "automatic-speech-recognition",
60
+ model=model,
61
+ tokenizer=processor.tokenizer,
62
+ feature_extractor=processor.feature_extractor,
63
+ torch_dtype=torch_dtype,
64
+ device=device,
65
+ )
66
 
67
+ result = pipe('sample.mp3')
68
+ print(result["text"])
69
 
70
+ ```
71
 
72
  ### Framework versions
73