--- library_name: peft license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B tags: - base_model:adapter:deepseek-ai/DeepSeek-R1-Distill-Llama-8B - lora - transformers pipeline_tag: text-generation model-index: - name: llama8b-netlist-lora results: [] --- # llama8b-netlist-lora This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1418 | 0.1465 | 50 | 1.1014 | | 0.9843 | 0.2929 | 100 | 0.9528 | | 0.8627 | 0.4394 | 150 | 0.9061 | | 0.8749 | 0.5859 | 200 | 0.8757 | | 0.8136 | 0.7323 | 250 | 0.8529 | | 0.8294 | 0.8788 | 300 | 0.8440 | | 0.7829 | 1.0234 | 350 | 0.8361 | | 0.747 | 1.1699 | 400 | 0.8230 | | 0.7567 | 1.3164 | 450 | 0.8226 | | 0.7579 | 1.4628 | 500 | 0.8138 | | 0.7387 | 1.6093 | 550 | 0.8079 | | 0.7744 | 1.7558 | 600 | 0.8008 | | 0.7494 | 1.9022 | 650 | 0.7939 | | 0.6829 | 2.0469 | 700 | 0.7967 | | 0.7044 | 2.1933 | 750 | 0.7945 | | 0.7144 | 2.3398 | 800 | 0.7925 | | 0.6889 | 2.4863 | 850 | 0.7894 | | 0.7095 | 2.6327 | 900 | 0.7882 | | 0.7064 | 2.7792 | 950 | 0.7878 | | 0.6854 | 2.9257 | 1000 | 0.7873 | ### Framework versions - PEFT 0.16.0 - Transformers 4.57.1 - Pytorch 2.6.0+cu124 - Datasets 4.1.1 - Tokenizers 0.22.1