Add remote code for Diffusers (#1)
Browse files- Remote code for Diffusers (06e58fe8e3380e85987f91a2052fa36faa78a23e)
Co-authored-by: hlky <[email protected]>
- README.md +2 -18
- model_index.json +5 -5
- pipeline_animemory.py +1771 -0
- scheduler/scheduler_config.json +1 -1
- scheduler/scheduling_euler_ancestral_discrete_x_pred.py +246 -0
- text_encoder/animemory_t5.py +81 -0
- text_encoder_2/animemory_altclip.py +119 -0
- vae/modeling_movq.py +539 -0
README.md
CHANGED
|
@@ -106,27 +106,11 @@ Go to [ComfyUI-Animemory-Loader](https://github.com/animEEEmpire/ComfyUI-Animemo
|
|
| 106 |
|
| 107 |
3.Diffusers inference.
|
| 108 |
|
| 109 |
-
- The pipeline has not been merged yet. Please use the following code to setup the environment.
|
| 110 |
-
```shell
|
| 111 |
-
git clone https://github.com/huggingface/diffusers.git
|
| 112 |
-
git clone https://github.com/animEEEmpire/diffusers_animemory
|
| 113 |
-
cp diffusers_animemory/* diffusers -r
|
| 114 |
-
|
| 115 |
-
# Method 1: Re-install diffusers. (Recommended)
|
| 116 |
-
cd diffusers
|
| 117 |
-
pip install .
|
| 118 |
-
|
| 119 |
-
# Method 2: Call it locally. Change `YOUR_PATH` to the directory where you just cloned `diffusers` and `diffusers_animemory`.
|
| 120 |
-
import sys
|
| 121 |
-
sys.path.insert(0, 'YOUR_PATH/diffusers/src')
|
| 122 |
-
```
|
| 123 |
-
- And then, you can use the following code to generate images.
|
| 124 |
-
|
| 125 |
```python
|
| 126 |
-
from diffusers import
|
| 127 |
import torch
|
| 128 |
|
| 129 |
-
pipe =
|
| 130 |
pipe.to("cuda")
|
| 131 |
|
| 132 |
prompt = "一只凶恶的狼,猩红的眼神,在午夜咆哮,月光皎洁"
|
|
|
|
| 106 |
|
| 107 |
3.Diffusers inference.
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
```python
|
| 110 |
+
from diffusers import DiffusionPipeline
|
| 111 |
import torch
|
| 112 |
|
| 113 |
+
pipe = DiffusionPipeline.from_pretrained("animEEEmpire/AniMemory-alpha", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 114 |
pipe.to("cuda")
|
| 115 |
|
| 116 |
prompt = "一只凶恶的狼,猩红的眼神,在午夜咆哮,月光皎洁"
|
model_index.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_class_name": "
|
| 3 |
"_diffusers_version": "0.32.0.dev0",
|
| 4 |
"feature_extractor": [
|
| 5 |
null,
|
|
@@ -11,15 +11,15 @@
|
|
| 11 |
null
|
| 12 |
],
|
| 13 |
"scheduler": [
|
| 14 |
-
"
|
| 15 |
"EulerAncestralDiscreteXPredScheduler"
|
| 16 |
],
|
| 17 |
"text_encoder": [
|
| 18 |
-
"
|
| 19 |
"AniMemoryT5"
|
| 20 |
],
|
| 21 |
"text_encoder_2": [
|
| 22 |
-
"
|
| 23 |
"AniMemoryAltCLip"
|
| 24 |
],
|
| 25 |
"tokenizer": [
|
|
@@ -35,7 +35,7 @@
|
|
| 35 |
"UNet2DConditionModel"
|
| 36 |
],
|
| 37 |
"vae": [
|
| 38 |
-
"
|
| 39 |
"MoVQ"
|
| 40 |
]
|
| 41 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_class_name": ["pipeline_animemory", "AniMemoryPipeline"],
|
| 3 |
"_diffusers_version": "0.32.0.dev0",
|
| 4 |
"feature_extractor": [
|
| 5 |
null,
|
|
|
|
| 11 |
null
|
| 12 |
],
|
| 13 |
"scheduler": [
|
| 14 |
+
"scheduling_euler_ancestral_discrete_x_pred",
|
| 15 |
"EulerAncestralDiscreteXPredScheduler"
|
| 16 |
],
|
| 17 |
"text_encoder": [
|
| 18 |
+
"animemory_t5",
|
| 19 |
"AniMemoryT5"
|
| 20 |
],
|
| 21 |
"text_encoder_2": [
|
| 22 |
+
"animemory_altclip",
|
| 23 |
"AniMemoryAltCLip"
|
| 24 |
],
|
| 25 |
"tokenizer": [
|
|
|
|
| 35 |
"UNet2DConditionModel"
|
| 36 |
],
|
| 37 |
"vae": [
|
| 38 |
+
"modeling_movq",
|
| 39 |
"MoVQ"
|
| 40 |
]
|
| 41 |
}
|
pipeline_animemory.py
ADDED
|
@@ -0,0 +1,1771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
import numpy as np
|
| 17 |
+
import PIL.Image
|
| 18 |
+
|
| 19 |
+
import inspect
|
| 20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
from transformers import (
|
| 24 |
+
CLIPImageProcessor,
|
| 25 |
+
CLIPVisionModelWithProjection,
|
| 26 |
+
XLMRobertaTokenizerFast,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 30 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 31 |
+
from diffusers.loaders import (
|
| 32 |
+
FromSingleFileMixin,
|
| 33 |
+
IPAdapterMixin,
|
| 34 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 35 |
+
TextualInversionLoaderMixin,
|
| 36 |
+
)
|
| 37 |
+
from diffusers.models import ImageProjection, UNet2DConditionModel
|
| 38 |
+
from diffusers.models.attention_processor import (
|
| 39 |
+
AttnProcessor2_0,
|
| 40 |
+
FusedAttnProcessor2_0,
|
| 41 |
+
XFormersAttnProcessor,
|
| 42 |
+
)
|
| 43 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 44 |
+
from diffusers.utils import (
|
| 45 |
+
USE_PEFT_BACKEND,
|
| 46 |
+
deprecate,
|
| 47 |
+
is_torch_xla_available,
|
| 48 |
+
logging,
|
| 49 |
+
replace_example_docstring,
|
| 50 |
+
scale_lora_layers,
|
| 51 |
+
unscale_lora_layers,
|
| 52 |
+
)
|
| 53 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 54 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 55 |
+
|
| 56 |
+
from diffusers.utils import BaseOutput
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
if is_torch_xla_available():
|
| 60 |
+
import torch_xla.core.xla_model as xm
|
| 61 |
+
|
| 62 |
+
XLA_AVAILABLE = True
|
| 63 |
+
else:
|
| 64 |
+
XLA_AVAILABLE = False
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@dataclass
|
| 68 |
+
class AniMemoryPipelineOutput(BaseOutput):
|
| 69 |
+
"""
|
| 70 |
+
Output class for Stable Diffusion pipelines.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
| 74 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
| 75 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 82 |
+
|
| 83 |
+
# TODO: update prompt case
|
| 84 |
+
EXAMPLE_DOC_STRING = """
|
| 85 |
+
Examples:
|
| 86 |
+
```py
|
| 87 |
+
>>> import torch
|
| 88 |
+
>>> from diffusers import AniMemoryPipeline
|
| 89 |
+
|
| 90 |
+
>>> pipe = AniMemoryPipeline.from_pretrained("animEEEmpire/AniMemory-alpha", torch_dtype=torch.bfloat16)
|
| 91 |
+
>>> pipe = pipe.to("cuda")
|
| 92 |
+
|
| 93 |
+
>>> prompt = "一只凶恶的狼,猩红的眼神,在午夜咆哮,月光皎洁"
|
| 94 |
+
>>> negative_prompt = "nsfw, worst quality, low quality, normal quality, low resolution, monochrome, blurry, wrong, Mutated hands and fingers, text, ugly faces, twisted, jpeg artifacts, watermark, low contrast, realistic"
|
| 95 |
+
>>> image = pipe(
|
| 96 |
+
... prompt=prompt,
|
| 97 |
+
... negative_prompt=negative_prompt,
|
| 98 |
+
... num_inference_steps=40,
|
| 99 |
+
... height=1024,
|
| 100 |
+
... width=1024,
|
| 101 |
+
... guidance_scale=6.0,
|
| 102 |
+
... ).images[0]
|
| 103 |
+
>>> image.save("output.png")
|
| 104 |
+
```
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
| 109 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
| 110 |
+
r"""
|
| 111 |
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
| 112 |
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
| 113 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
noise_cfg (`torch.Tensor`):
|
| 117 |
+
The predicted noise tensor for the guided diffusion process.
|
| 118 |
+
noise_pred_text (`torch.Tensor`):
|
| 119 |
+
The predicted noise tensor for the text-guided diffusion process.
|
| 120 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
| 121 |
+
A rescale factor applied to the noise predictions.
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
| 125 |
+
"""
|
| 126 |
+
std_text = noise_pred_text.std(
|
| 127 |
+
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
|
| 128 |
+
)
|
| 129 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
| 130 |
+
# rescale the results from guidance (fixes overexposure)
|
| 131 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
| 132 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
| 133 |
+
noise_cfg = (
|
| 134 |
+
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
| 135 |
+
)
|
| 136 |
+
return noise_cfg
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 140 |
+
def retrieve_timesteps(
|
| 141 |
+
scheduler,
|
| 142 |
+
num_inference_steps: Optional[int] = None,
|
| 143 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 144 |
+
timesteps: Optional[List[int]] = None,
|
| 145 |
+
sigmas: Optional[List[float]] = None,
|
| 146 |
+
**kwargs,
|
| 147 |
+
):
|
| 148 |
+
r"""
|
| 149 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 150 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 151 |
+
|
| 152 |
+
Args:
|
| 153 |
+
scheduler (`SchedulerMixin`):
|
| 154 |
+
The scheduler to get timesteps from.
|
| 155 |
+
num_inference_steps (`int`):
|
| 156 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 157 |
+
must be `None`.
|
| 158 |
+
device (`str` or `torch.device`, *optional*):
|
| 159 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 160 |
+
timesteps (`List[int]`, *optional*):
|
| 161 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 162 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 163 |
+
sigmas (`List[float]`, *optional*):
|
| 164 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 165 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 166 |
+
|
| 167 |
+
Returns:
|
| 168 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 169 |
+
second element is the number of inference steps.
|
| 170 |
+
"""
|
| 171 |
+
if timesteps is not None and sigmas is not None:
|
| 172 |
+
raise ValueError(
|
| 173 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
| 174 |
+
)
|
| 175 |
+
if timesteps is not None:
|
| 176 |
+
accepts_timesteps = "timesteps" in set(
|
| 177 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 178 |
+
)
|
| 179 |
+
if not accepts_timesteps:
|
| 180 |
+
raise ValueError(
|
| 181 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 182 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 183 |
+
)
|
| 184 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 185 |
+
timesteps = scheduler.timesteps
|
| 186 |
+
num_inference_steps = len(timesteps)
|
| 187 |
+
elif sigmas is not None:
|
| 188 |
+
accept_sigmas = "sigmas" in set(
|
| 189 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 190 |
+
)
|
| 191 |
+
if not accept_sigmas:
|
| 192 |
+
raise ValueError(
|
| 193 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 194 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 195 |
+
)
|
| 196 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 197 |
+
timesteps = scheduler.timesteps
|
| 198 |
+
num_inference_steps = len(timesteps)
|
| 199 |
+
else:
|
| 200 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 201 |
+
timesteps = scheduler.timesteps
|
| 202 |
+
return timesteps, num_inference_steps
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def split_input_ids(
|
| 206 |
+
input_ids,
|
| 207 |
+
attention_mask,
|
| 208 |
+
start,
|
| 209 |
+
model_max_length,
|
| 210 |
+
bos_token_id,
|
| 211 |
+
eos_token_id,
|
| 212 |
+
pad_token_id,
|
| 213 |
+
):
|
| 214 |
+
iids_list = []
|
| 215 |
+
mask_list = []
|
| 216 |
+
if start > 0:
|
| 217 |
+
cur_input_ids = input_ids[start - 1 :]
|
| 218 |
+
cur_input_ids[0] = bos_token_id
|
| 219 |
+
if attention_mask is not None:
|
| 220 |
+
cur_attention_mask = attention_mask[start - 1 :]
|
| 221 |
+
cur_attention_mask[0] = 1
|
| 222 |
+
else:
|
| 223 |
+
cur_input_ids = input_ids
|
| 224 |
+
if attention_mask is not None:
|
| 225 |
+
cur_attention_mask = attention_mask
|
| 226 |
+
n = len(cur_input_ids)
|
| 227 |
+
|
| 228 |
+
for i in range(1, n - model_max_length + 2, model_max_length - 2):
|
| 229 |
+
ids_chunk = (
|
| 230 |
+
cur_input_ids[0].unsqueeze(0),
|
| 231 |
+
cur_input_ids[i : i + model_max_length - 2],
|
| 232 |
+
cur_input_ids[-1].unsqueeze(0),
|
| 233 |
+
)
|
| 234 |
+
ids_chunk = torch.cat(ids_chunk)
|
| 235 |
+
if attention_mask is not None:
|
| 236 |
+
mask_chunk = (
|
| 237 |
+
cur_attention_mask[0].unsqueeze(0),
|
| 238 |
+
cur_attention_mask[i : i + model_max_length - 2],
|
| 239 |
+
cur_attention_mask[-1].unsqueeze(0),
|
| 240 |
+
)
|
| 241 |
+
mask_chunk = torch.cat(mask_chunk)
|
| 242 |
+
|
| 243 |
+
if ids_chunk[-2] != eos_token_id and ids_chunk[-2] != pad_token_id:
|
| 244 |
+
ids_chunk[-1] = eos_token_id
|
| 245 |
+
if attention_mask is not None:
|
| 246 |
+
mask_chunk[-1] = 1
|
| 247 |
+
if ids_chunk[1] == pad_token_id:
|
| 248 |
+
ids_chunk[1] = eos_token_id
|
| 249 |
+
if attention_mask is not None:
|
| 250 |
+
mask_chunk[1] = 1
|
| 251 |
+
|
| 252 |
+
iids_list.append(ids_chunk)
|
| 253 |
+
if attention_mask is not None:
|
| 254 |
+
mask_list.append(mask_chunk)
|
| 255 |
+
|
| 256 |
+
return iids_list, mask_list if len(mask_list) > 0 else None
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
# Modified from [library.train_util.get_input_ids](https://github.com/kohya-ss/sd-scripts/blob/e5ac09574928ec02fba5fe78267764d26bb7faa6/library/train_util.py#L795)
|
| 260 |
+
def get_input_ids(
|
| 261 |
+
caption,
|
| 262 |
+
tokenizer,
|
| 263 |
+
tokenizer_max_length,
|
| 264 |
+
dense_caption_split_method,
|
| 265 |
+
chunk,
|
| 266 |
+
punctuation_ids,
|
| 267 |
+
):
|
| 268 |
+
prompt_tokens = tokenizer(
|
| 269 |
+
caption,
|
| 270 |
+
max_length=tokenizer_max_length,
|
| 271 |
+
padding="max_length",
|
| 272 |
+
truncation=True,
|
| 273 |
+
return_tensors="pt",
|
| 274 |
+
)
|
| 275 |
+
input_ids = prompt_tokens["input_ids"].squeeze(0)
|
| 276 |
+
attention_mask = prompt_tokens["attention_mask"].squeeze(0)
|
| 277 |
+
|
| 278 |
+
if not chunk:
|
| 279 |
+
return input_ids[None, ...], attention_mask[None, ...]
|
| 280 |
+
|
| 281 |
+
iids_list = []
|
| 282 |
+
mask_list = []
|
| 283 |
+
|
| 284 |
+
if dense_caption_split_method == "length_split":
|
| 285 |
+
iids_list, mask_list = split_input_ids(
|
| 286 |
+
input_ids,
|
| 287 |
+
attention_mask,
|
| 288 |
+
0,
|
| 289 |
+
tokenizer.model_max_length,
|
| 290 |
+
tokenizer.bos_token_id,
|
| 291 |
+
tokenizer.eos_token_id,
|
| 292 |
+
tokenizer.pad_token_id,
|
| 293 |
+
)
|
| 294 |
+
elif dense_caption_split_method == "punctuation_split":
|
| 295 |
+
can_split_tensor = torch.zeros_like(input_ids)
|
| 296 |
+
for punctuation_id in punctuation_ids:
|
| 297 |
+
can_split_tensor = torch.logical_or(
|
| 298 |
+
can_split_tensor, input_ids == punctuation_id
|
| 299 |
+
)
|
| 300 |
+
can_split_index = (
|
| 301 |
+
[0]
|
| 302 |
+
+ [i[0] for i in torch.nonzero(can_split_tensor).tolist()]
|
| 303 |
+
+ [len(input_ids) - 1]
|
| 304 |
+
)
|
| 305 |
+
start = 1
|
| 306 |
+
end = 1
|
| 307 |
+
|
| 308 |
+
new_can_split_index = []
|
| 309 |
+
for i in range(len(can_split_index) - 1):
|
| 310 |
+
pre = can_split_index[i]
|
| 311 |
+
new_can_split_index.append(pre)
|
| 312 |
+
nxt = can_split_index[i + 1]
|
| 313 |
+
cur = pre + tokenizer.model_max_length - 2
|
| 314 |
+
while cur < nxt:
|
| 315 |
+
new_can_split_index.append(cur)
|
| 316 |
+
cur = cur + tokenizer.model_max_length - 2
|
| 317 |
+
new_can_split_index.append(can_split_index[-1])
|
| 318 |
+
can_split_index = new_can_split_index
|
| 319 |
+
|
| 320 |
+
for i in can_split_index:
|
| 321 |
+
if i - start + 1 > tokenizer.model_max_length - 2:
|
| 322 |
+
if end == start:
|
| 323 |
+
end = start + (tokenizer.model_max_length - 2)
|
| 324 |
+
ids_chunk = torch.tensor(
|
| 325 |
+
[tokenizer.pad_token_id] * tokenizer.model_max_length,
|
| 326 |
+
dtype=torch.int64,
|
| 327 |
+
)
|
| 328 |
+
ids_chunk[0] = tokenizer.bos_token_id
|
| 329 |
+
ids_chunk[1 : 1 + end - start] = input_ids[start:end]
|
| 330 |
+
ids_chunk[1 + end - start] = input_ids[-1]
|
| 331 |
+
mask_chunk = torch.zeros(tokenizer.model_max_length).to(torch.int64)
|
| 332 |
+
mask_chunk[0] = 1
|
| 333 |
+
mask_chunk[1 : 1 + end - start] = attention_mask[start:end]
|
| 334 |
+
mask_chunk[1 + end - start] = attention_mask[-1]
|
| 335 |
+
if ids_chunk[1] == tokenizer.pad_token_id:
|
| 336 |
+
ids_chunk[1] = tokenizer.eos_token_id
|
| 337 |
+
mask_chunk[1] = 1
|
| 338 |
+
if tokenizer.eos_token_id not in ids_chunk:
|
| 339 |
+
ids_chunk[1 + end - start] = tokenizer.eos_token_id
|
| 340 |
+
mask_chunk[1 + end - start] = 1
|
| 341 |
+
iids_list.append(ids_chunk)
|
| 342 |
+
mask_list.append(mask_chunk)
|
| 343 |
+
if len(iids_list) == 3:
|
| 344 |
+
break
|
| 345 |
+
start = end
|
| 346 |
+
end = i + 1
|
| 347 |
+
|
| 348 |
+
if len(iids_list) == 0:
|
| 349 |
+
iids_list, mask_list = split_input_ids(
|
| 350 |
+
input_ids,
|
| 351 |
+
attention_mask,
|
| 352 |
+
0,
|
| 353 |
+
tokenizer.model_max_length,
|
| 354 |
+
tokenizer.bos_token_id,
|
| 355 |
+
tokenizer.eos_token_id,
|
| 356 |
+
tokenizer.pad_token_id,
|
| 357 |
+
)
|
| 358 |
+
elif len(iids_list) == 1:
|
| 359 |
+
iids_list1, mask_list1 = split_input_ids(
|
| 360 |
+
input_ids,
|
| 361 |
+
attention_mask,
|
| 362 |
+
start,
|
| 363 |
+
tokenizer.model_max_length,
|
| 364 |
+
tokenizer.bos_token_id,
|
| 365 |
+
tokenizer.eos_token_id,
|
| 366 |
+
tokenizer.pad_token_id,
|
| 367 |
+
)
|
| 368 |
+
iids_list = (iids_list + iids_list1)[:3]
|
| 369 |
+
mask_list = (mask_list + mask_list1)[:3]
|
| 370 |
+
elif len(iids_list) == 2:
|
| 371 |
+
iids_list1, mask_list1 = split_input_ids(
|
| 372 |
+
input_ids,
|
| 373 |
+
attention_mask,
|
| 374 |
+
start,
|
| 375 |
+
tokenizer.model_max_length,
|
| 376 |
+
tokenizer.bos_token_id,
|
| 377 |
+
tokenizer.eos_token_id,
|
| 378 |
+
tokenizer.pad_token_id,
|
| 379 |
+
)
|
| 380 |
+
iids_list = (iids_list + iids_list1)[:3]
|
| 381 |
+
mask_list = (mask_list + mask_list1)[:3]
|
| 382 |
+
else:
|
| 383 |
+
raise NotImplementedError
|
| 384 |
+
|
| 385 |
+
input_ids = torch.stack(iids_list)
|
| 386 |
+
attention_mask = torch.stack(mask_list)
|
| 387 |
+
|
| 388 |
+
return input_ids, attention_mask
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class AniMemoryPipeline(
|
| 392 |
+
DiffusionPipeline,
|
| 393 |
+
StableDiffusionMixin,
|
| 394 |
+
FromSingleFileMixin,
|
| 395 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 396 |
+
TextualInversionLoaderMixin,
|
| 397 |
+
IPAdapterMixin,
|
| 398 |
+
):
|
| 399 |
+
# TODO: review
|
| 400 |
+
r"""
|
| 401 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
| 402 |
+
|
| 403 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 404 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 405 |
+
|
| 406 |
+
The pipeline also inherits the following loading methods:
|
| 407 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 408 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 409 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 410 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 411 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 412 |
+
|
| 413 |
+
Args:
|
| 414 |
+
vae ([`MoVQ`]):
|
| 415 |
+
Variational Auto-Encoder (VAE) Model. AniMemory uses
|
| 416 |
+
[MoVQ](https://github.com/ai-forever/Kandinsky-3/blob/main/kandinsky3/movq.py)
|
| 417 |
+
text_encoder ([`AniMemoryT5`]):
|
| 418 |
+
Frozen text-encoder. AniMemory builds based on
|
| 419 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel).
|
| 420 |
+
text_encoder_2 ([`AniMemoryAltCLip`]):
|
| 421 |
+
Second frozen text-encoder. AniMemory builds based on
|
| 422 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
|
| 423 |
+
tokenizer (`XLMRobertaTokenizerFast`):
|
| 424 |
+
Tokenizer of class
|
| 425 |
+
[XLMRobertaTokenizerFast](https://huggingface.co/docs/transformers/v4.46.3/en/model_doc/xlm-roberta#transformers.XLMRobertaTokenizerFast).
|
| 426 |
+
tokenizer_2 (`XLMRobertaTokenizerFast`):
|
| 427 |
+
Second Tokenizer of class
|
| 428 |
+
[XLMRobertaTokenizerFast](https://huggingface.co/docs/transformers/v4.46.3/en/model_doc/xlm-roberta#transformers.XLMRobertaTokenizerFast).
|
| 429 |
+
unet ([`UNet2DConditionModel`]):
|
| 430 |
+
Conditional U-Net architecture to denoise the encoded image latents.
|
| 431 |
+
scheduler ([`EulerAncestralDiscreteXPredScheduler`]):
|
| 432 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
| 433 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
| 434 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0.
|
| 435 |
+
"""
|
| 436 |
+
|
| 437 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
| 438 |
+
_optional_components = [
|
| 439 |
+
"tokenizer",
|
| 440 |
+
"tokenizer_2",
|
| 441 |
+
"text_encoder",
|
| 442 |
+
"text_encoder_2",
|
| 443 |
+
"image_encoder",
|
| 444 |
+
"feature_extractor",
|
| 445 |
+
]
|
| 446 |
+
_callback_tensor_inputs = [
|
| 447 |
+
"latents",
|
| 448 |
+
"prompt_embeds",
|
| 449 |
+
"negative_prompt_embeds",
|
| 450 |
+
"add_text_embeds",
|
| 451 |
+
"add_time_ids",
|
| 452 |
+
"negative_pooled_prompt_embeds",
|
| 453 |
+
"negative_add_time_ids",
|
| 454 |
+
]
|
| 455 |
+
|
| 456 |
+
def __init__(
|
| 457 |
+
self,
|
| 458 |
+
vae: "MoVQ", # type: ignore
|
| 459 |
+
text_encoder: "AniMemoryT5", # type: ignore
|
| 460 |
+
text_encoder_2: "AniMemoryAltCLip", # type: ignore
|
| 461 |
+
tokenizer: XLMRobertaTokenizerFast,
|
| 462 |
+
tokenizer_2: XLMRobertaTokenizerFast,
|
| 463 |
+
unet: UNet2DConditionModel,
|
| 464 |
+
scheduler: "EulerAncestralDiscreteXPredScheduler", # type: ignore
|
| 465 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
| 466 |
+
feature_extractor: CLIPImageProcessor = None,
|
| 467 |
+
force_zeros_for_empty_prompt: bool = True,
|
| 468 |
+
):
|
| 469 |
+
super().__init__()
|
| 470 |
+
|
| 471 |
+
self.register_modules(
|
| 472 |
+
vae=vae,
|
| 473 |
+
text_encoder=text_encoder,
|
| 474 |
+
text_encoder_2=text_encoder_2,
|
| 475 |
+
tokenizer=tokenizer,
|
| 476 |
+
tokenizer_2=tokenizer_2,
|
| 477 |
+
unet=unet,
|
| 478 |
+
scheduler=scheduler,
|
| 479 |
+
image_encoder=image_encoder,
|
| 480 |
+
feature_extractor=feature_extractor,
|
| 481 |
+
)
|
| 482 |
+
self.register_to_config(
|
| 483 |
+
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
|
| 484 |
+
)
|
| 485 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 486 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 487 |
+
|
| 488 |
+
self.default_sample_size = self.unet.config.sample_size
|
| 489 |
+
|
| 490 |
+
self.unet.time_proj.downscale_freq_shift = 1
|
| 491 |
+
|
| 492 |
+
self.scheduler.config.clip_sample = False
|
| 493 |
+
self.scheduler.config.timestep_spacing = "linspace"
|
| 494 |
+
self.scheduler.config.prediction_type = "sample"
|
| 495 |
+
self.scheduler.rescale_betas_zero_snr()
|
| 496 |
+
|
| 497 |
+
def encode_prompt(
|
| 498 |
+
self,
|
| 499 |
+
prompt: str,
|
| 500 |
+
prompt_2: Optional[str] = None,
|
| 501 |
+
device: Optional[torch.device] = None,
|
| 502 |
+
num_images_per_prompt: int = 1,
|
| 503 |
+
do_classifier_free_guidance: bool = True,
|
| 504 |
+
negative_prompt: Optional[str] = None,
|
| 505 |
+
negative_prompt_2: Optional[str] = None,
|
| 506 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 507 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 508 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 509 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 510 |
+
lora_scale: Optional[float] = None,
|
| 511 |
+
clip_skip: Optional[int] = None,
|
| 512 |
+
):
|
| 513 |
+
r"""
|
| 514 |
+
Encodes the prompt into text encoder hidden states.
|
| 515 |
+
|
| 516 |
+
Args:
|
| 517 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 518 |
+
prompt to be encoded
|
| 519 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 520 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 521 |
+
used in both text-encoders
|
| 522 |
+
device: (`torch.device`):
|
| 523 |
+
torch device
|
| 524 |
+
num_images_per_prompt (`int`):
|
| 525 |
+
number of images that should be generated per prompt
|
| 526 |
+
do_classifier_free_guidance (`bool`):
|
| 527 |
+
whether to use classifier free guidance or not
|
| 528 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 529 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 530 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 531 |
+
less than `1`).
|
| 532 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 533 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 534 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
| 535 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 536 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 537 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 538 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 539 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 540 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 541 |
+
argument.
|
| 542 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 543 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 544 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 545 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 546 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 547 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 548 |
+
input argument.
|
| 549 |
+
lora_scale (`float`, *optional*):
|
| 550 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 551 |
+
clip_skip (`int`, *optional*):
|
| 552 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 553 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 554 |
+
"""
|
| 555 |
+
if device is None:
|
| 556 |
+
device = self._execution_device
|
| 557 |
+
|
| 558 |
+
# set lora scale so that monkey patched LoRA
|
| 559 |
+
# function of text encoder can correctly access it
|
| 560 |
+
if lora_scale is not None and isinstance(
|
| 561 |
+
self, StableDiffusionXLLoraLoaderMixin
|
| 562 |
+
):
|
| 563 |
+
self._lora_scale = lora_scale
|
| 564 |
+
|
| 565 |
+
# dynamically adjust the LoRA scale
|
| 566 |
+
if self.text_encoder is not None:
|
| 567 |
+
if not USE_PEFT_BACKEND:
|
| 568 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
| 569 |
+
else:
|
| 570 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 571 |
+
|
| 572 |
+
if self.text_encoder_2 is not None:
|
| 573 |
+
if not USE_PEFT_BACKEND:
|
| 574 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
| 575 |
+
else:
|
| 576 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 577 |
+
|
| 578 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 579 |
+
|
| 580 |
+
if prompt is not None:
|
| 581 |
+
batch_size = len(prompt)
|
| 582 |
+
else:
|
| 583 |
+
batch_size = prompt_embeds.shape[0]
|
| 584 |
+
|
| 585 |
+
# Define tokenizers and text encoders
|
| 586 |
+
tokenizers = (
|
| 587 |
+
[self.tokenizer, self.tokenizer_2]
|
| 588 |
+
if self.tokenizer is not None
|
| 589 |
+
else [self.tokenizer_2]
|
| 590 |
+
)
|
| 591 |
+
text_encoders = (
|
| 592 |
+
[self.text_encoder, self.text_encoder_2]
|
| 593 |
+
if self.text_encoder is not None
|
| 594 |
+
else [self.text_encoder_2]
|
| 595 |
+
)
|
| 596 |
+
|
| 597 |
+
punctuation_ids = [
|
| 598 |
+
[5, 4, 74, 32, 38, 4730, 30, 4, 74, 32, 38, 4730],
|
| 599 |
+
[5, 4, 74, 32, 38, 4730, 30, 4, 74, 32, 38, 4730],
|
| 600 |
+
]
|
| 601 |
+
max_token_length = 227
|
| 602 |
+
|
| 603 |
+
if prompt_embeds is None:
|
| 604 |
+
prompt_2 = prompt_2 or prompt
|
| 605 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 606 |
+
|
| 607 |
+
# textual inversion: process multi-vector tokens if necessary
|
| 608 |
+
prompt_embeds_list = []
|
| 609 |
+
prompts = [prompt, prompt_2]
|
| 610 |
+
text_encoder_idx = 0
|
| 611 |
+
for prompt, tokenizer, text_encoder in zip(
|
| 612 |
+
prompts, tokenizers, text_encoders
|
| 613 |
+
):
|
| 614 |
+
text_input_ids, attention_mask = get_input_ids(
|
| 615 |
+
prompt,
|
| 616 |
+
tokenizers[text_encoder_idx],
|
| 617 |
+
max_token_length,
|
| 618 |
+
"punctuation_split",
|
| 619 |
+
False if text_encoder_idx == 0 else True,
|
| 620 |
+
punctuation_ids[text_encoder_idx],
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
tk_len = text_input_ids.shape[-1]
|
| 624 |
+
text_input_ids = text_input_ids.reshape((-1, tk_len))
|
| 625 |
+
attention_mask = attention_mask.reshape((-1, tk_len))
|
| 626 |
+
|
| 627 |
+
prompt_embeds, pooled_output = text_encoder(
|
| 628 |
+
text_input_ids.to(device), attention_mask.to(device)
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
if text_encoder_idx == 1:
|
| 632 |
+
tmp_ids = text_input_ids.reshape(-1, 3, text_input_ids.shape[-1])
|
| 633 |
+
_, n2, tk_len2 = tmp_ids.size()
|
| 634 |
+
prompt_embeds = prompt_embeds.reshape(
|
| 635 |
+
(-1, n2 * tk_len2, prompt_embeds.shape[-1])
|
| 636 |
+
)
|
| 637 |
+
if n2 > 1:
|
| 638 |
+
states_list = [prompt_embeds[:, 0].unsqueeze(1)]
|
| 639 |
+
for i in range(
|
| 640 |
+
1,
|
| 641 |
+
max_token_length,
|
| 642 |
+
tokenizers[text_encoder_idx].model_max_length,
|
| 643 |
+
):
|
| 644 |
+
states_list.append(
|
| 645 |
+
prompt_embeds[
|
| 646 |
+
:,
|
| 647 |
+
i : i
|
| 648 |
+
+ tokenizers[text_encoder_idx].model_max_length
|
| 649 |
+
- 2,
|
| 650 |
+
]
|
| 651 |
+
)
|
| 652 |
+
states_list.append(prompt_embeds[:, -1].unsqueeze(1))
|
| 653 |
+
prompt_embeds = torch.cat(states_list, dim=1)
|
| 654 |
+
|
| 655 |
+
pooled_prompt_embeds = pooled_output[::n2]
|
| 656 |
+
|
| 657 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 658 |
+
text_encoder_idx += 1
|
| 659 |
+
|
| 660 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
| 661 |
+
|
| 662 |
+
# get unconditional embeddings for classifier free guidance
|
| 663 |
+
zero_out_negative_prompt = (
|
| 664 |
+
negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
| 665 |
+
)
|
| 666 |
+
if (
|
| 667 |
+
do_classifier_free_guidance
|
| 668 |
+
and negative_prompt_embeds is None
|
| 669 |
+
and zero_out_negative_prompt
|
| 670 |
+
):
|
| 671 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
| 672 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
| 673 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 674 |
+
negative_prompt = negative_prompt or ""
|
| 675 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 676 |
+
|
| 677 |
+
negative_prompt = (
|
| 678 |
+
batch_size * [negative_prompt]
|
| 679 |
+
if isinstance(negative_prompt, str)
|
| 680 |
+
else negative_prompt
|
| 681 |
+
)
|
| 682 |
+
negative_prompt_2 = (
|
| 683 |
+
batch_size * [negative_prompt_2]
|
| 684 |
+
if isinstance(negative_prompt_2, str)
|
| 685 |
+
else negative_prompt_2
|
| 686 |
+
)
|
| 687 |
+
|
| 688 |
+
uncond_tokens: List[str]
|
| 689 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 690 |
+
raise TypeError(
|
| 691 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 692 |
+
f" {type(prompt)}."
|
| 693 |
+
)
|
| 694 |
+
elif batch_size != len(negative_prompt):
|
| 695 |
+
raise ValueError(
|
| 696 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 697 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 698 |
+
" the batch size of `prompt`."
|
| 699 |
+
)
|
| 700 |
+
else:
|
| 701 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
| 702 |
+
|
| 703 |
+
negative_prompt_embeds_list = []
|
| 704 |
+
text_encoder_idx = 0
|
| 705 |
+
for negative_prompt, tokenizer, text_encoder in zip(
|
| 706 |
+
uncond_tokens, tokenizers, text_encoders
|
| 707 |
+
):
|
| 708 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 709 |
+
negative_prompt = self.maybe_convert_prompt(
|
| 710 |
+
negative_prompt, tokenizer
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
negative_text_input_ids, negative_attention_mask = get_input_ids(
|
| 714 |
+
negative_prompt,
|
| 715 |
+
tokenizers[text_encoder_idx],
|
| 716 |
+
max_token_length,
|
| 717 |
+
"punctuation_split",
|
| 718 |
+
False if text_encoder_idx == 0 else True,
|
| 719 |
+
punctuation_ids[text_encoder_idx],
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
tk_len = negative_text_input_ids.shape[-1]
|
| 723 |
+
negative_text_input_ids = negative_text_input_ids.reshape((-1, tk_len))
|
| 724 |
+
negative_attention_mask = negative_attention_mask.reshape((-1, tk_len))
|
| 725 |
+
|
| 726 |
+
negative_prompt_embeds, negative_pooled_ouput = text_encoder(
|
| 727 |
+
negative_text_input_ids.to(device),
|
| 728 |
+
negative_attention_mask.to(device),
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
if text_encoder_idx == 1:
|
| 732 |
+
negative_tmp_ids = negative_text_input_ids.reshape(
|
| 733 |
+
-1, 3, negative_text_input_ids.shape[-1]
|
| 734 |
+
)
|
| 735 |
+
_, n2, tk_len2 = negative_tmp_ids.size()
|
| 736 |
+
negative_prompt_embeds = negative_prompt_embeds.reshape(
|
| 737 |
+
(-1, n2 * tk_len2, negative_prompt_embeds.shape[-1])
|
| 738 |
+
)
|
| 739 |
+
if n2 > 1:
|
| 740 |
+
states_list = [negative_prompt_embeds[:, 0].unsqueeze(1)]
|
| 741 |
+
for i in range(
|
| 742 |
+
1,
|
| 743 |
+
max_token_length,
|
| 744 |
+
tokenizers[text_encoder_idx].model_max_length,
|
| 745 |
+
):
|
| 746 |
+
states_list.append(
|
| 747 |
+
negative_prompt_embeds[
|
| 748 |
+
:,
|
| 749 |
+
i : i
|
| 750 |
+
+ tokenizers[text_encoder_idx].model_max_length
|
| 751 |
+
- 2,
|
| 752 |
+
]
|
| 753 |
+
)
|
| 754 |
+
states_list.append(negative_prompt_embeds[:, -1].unsqueeze(1))
|
| 755 |
+
negative_prompt_embeds = torch.cat(states_list, dim=1)
|
| 756 |
+
negative_pooled_prompt_embeds = negative_pooled_ouput[::n2]
|
| 757 |
+
|
| 758 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
| 759 |
+
text_encoder_idx += 1
|
| 760 |
+
|
| 761 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
| 762 |
+
|
| 763 |
+
if self.text_encoder_2 is not None:
|
| 764 |
+
prompt_embeds = prompt_embeds.to(
|
| 765 |
+
dtype=self.text_encoder_2.dtype, device=device
|
| 766 |
+
)
|
| 767 |
+
else:
|
| 768 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
| 769 |
+
|
| 770 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 771 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 772 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 773 |
+
prompt_embeds = prompt_embeds.view(
|
| 774 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
if do_classifier_free_guidance:
|
| 778 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 779 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 780 |
+
|
| 781 |
+
if self.text_encoder_2 is not None:
|
| 782 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
| 783 |
+
dtype=self.text_encoder_2.dtype, device=device
|
| 784 |
+
)
|
| 785 |
+
else:
|
| 786 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
| 787 |
+
dtype=self.unet.dtype, device=device
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
| 791 |
+
1, num_images_per_prompt, 1
|
| 792 |
+
)
|
| 793 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 794 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 795 |
+
)
|
| 796 |
+
|
| 797 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(
|
| 798 |
+
1, num_images_per_prompt
|
| 799 |
+
).view(bs_embed * num_images_per_prompt, -1)
|
| 800 |
+
if do_classifier_free_guidance:
|
| 801 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
|
| 802 |
+
1, num_images_per_prompt
|
| 803 |
+
).view(bs_embed * num_images_per_prompt, -1)
|
| 804 |
+
|
| 805 |
+
if self.text_encoder is not None:
|
| 806 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 807 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 808 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 809 |
+
|
| 810 |
+
if self.text_encoder_2 is not None:
|
| 811 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 812 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 813 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 814 |
+
# breakpoint()
|
| 815 |
+
return (
|
| 816 |
+
prompt_embeds,
|
| 817 |
+
negative_prompt_embeds,
|
| 818 |
+
pooled_prompt_embeds,
|
| 819 |
+
negative_pooled_prompt_embeds,
|
| 820 |
+
)
|
| 821 |
+
|
| 822 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
| 823 |
+
def encode_image(
|
| 824 |
+
self, image, device, num_images_per_prompt, output_hidden_states=None
|
| 825 |
+
):
|
| 826 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 827 |
+
|
| 828 |
+
if not isinstance(image, torch.Tensor):
|
| 829 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 830 |
+
|
| 831 |
+
image = image.to(device=device, dtype=dtype)
|
| 832 |
+
if output_hidden_states:
|
| 833 |
+
image_enc_hidden_states = self.image_encoder(
|
| 834 |
+
image, output_hidden_states=True
|
| 835 |
+
).hidden_states[-2]
|
| 836 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(
|
| 837 |
+
num_images_per_prompt, dim=0
|
| 838 |
+
)
|
| 839 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
| 840 |
+
torch.zeros_like(image), output_hidden_states=True
|
| 841 |
+
).hidden_states[-2]
|
| 842 |
+
uncond_image_enc_hidden_states = (
|
| 843 |
+
uncond_image_enc_hidden_states.repeat_interleave(
|
| 844 |
+
num_images_per_prompt, dim=0
|
| 845 |
+
)
|
| 846 |
+
)
|
| 847 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
| 848 |
+
else:
|
| 849 |
+
image_embeds = self.image_encoder(image).image_embeds
|
| 850 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 851 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
| 852 |
+
|
| 853 |
+
return image_embeds, uncond_image_embeds
|
| 854 |
+
|
| 855 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
| 856 |
+
def prepare_ip_adapter_image_embeds(
|
| 857 |
+
self,
|
| 858 |
+
ip_adapter_image,
|
| 859 |
+
ip_adapter_image_embeds,
|
| 860 |
+
device,
|
| 861 |
+
num_images_per_prompt,
|
| 862 |
+
do_classifier_free_guidance,
|
| 863 |
+
):
|
| 864 |
+
image_embeds = []
|
| 865 |
+
if do_classifier_free_guidance:
|
| 866 |
+
negative_image_embeds = []
|
| 867 |
+
if ip_adapter_image_embeds is None:
|
| 868 |
+
if not isinstance(ip_adapter_image, list):
|
| 869 |
+
ip_adapter_image = [ip_adapter_image]
|
| 870 |
+
|
| 871 |
+
if len(ip_adapter_image) != len(
|
| 872 |
+
self.unet.encoder_hid_proj.image_projection_layers
|
| 873 |
+
):
|
| 874 |
+
raise ValueError(
|
| 875 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
| 876 |
+
)
|
| 877 |
+
|
| 878 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
| 879 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
| 880 |
+
):
|
| 881 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
| 882 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
| 883 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
image_embeds.append(single_image_embeds[None, :])
|
| 887 |
+
if do_classifier_free_guidance:
|
| 888 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
| 889 |
+
else:
|
| 890 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
| 891 |
+
if do_classifier_free_guidance:
|
| 892 |
+
(
|
| 893 |
+
single_negative_image_embeds,
|
| 894 |
+
single_image_embeds,
|
| 895 |
+
) = single_image_embeds.chunk(2)
|
| 896 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
| 897 |
+
image_embeds.append(single_image_embeds)
|
| 898 |
+
|
| 899 |
+
ip_adapter_image_embeds = []
|
| 900 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
| 901 |
+
single_image_embeds = torch.cat(
|
| 902 |
+
[single_image_embeds] * num_images_per_prompt, dim=0
|
| 903 |
+
)
|
| 904 |
+
if do_classifier_free_guidance:
|
| 905 |
+
single_negative_image_embeds = torch.cat(
|
| 906 |
+
[negative_image_embeds[i]] * num_images_per_prompt, dim=0
|
| 907 |
+
)
|
| 908 |
+
single_image_embeds = torch.cat(
|
| 909 |
+
[single_negative_image_embeds, single_image_embeds], dim=0
|
| 910 |
+
)
|
| 911 |
+
|
| 912 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
| 913 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
| 914 |
+
|
| 915 |
+
return ip_adapter_image_embeds
|
| 916 |
+
|
| 917 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 918 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 919 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 920 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 921 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 922 |
+
# and should be between [0, 1]
|
| 923 |
+
|
| 924 |
+
accepts_eta = "eta" in set(
|
| 925 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 926 |
+
)
|
| 927 |
+
extra_step_kwargs = {}
|
| 928 |
+
if accepts_eta:
|
| 929 |
+
extra_step_kwargs["eta"] = eta
|
| 930 |
+
|
| 931 |
+
# check if the scheduler accepts generator
|
| 932 |
+
accepts_generator = "generator" in set(
|
| 933 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 934 |
+
)
|
| 935 |
+
if accepts_generator:
|
| 936 |
+
extra_step_kwargs["generator"] = generator
|
| 937 |
+
return extra_step_kwargs
|
| 938 |
+
|
| 939 |
+
def check_inputs(
|
| 940 |
+
self,
|
| 941 |
+
prompt,
|
| 942 |
+
prompt_2,
|
| 943 |
+
height,
|
| 944 |
+
width,
|
| 945 |
+
callback_steps,
|
| 946 |
+
negative_prompt=None,
|
| 947 |
+
negative_prompt_2=None,
|
| 948 |
+
prompt_embeds=None,
|
| 949 |
+
negative_prompt_embeds=None,
|
| 950 |
+
pooled_prompt_embeds=None,
|
| 951 |
+
negative_pooled_prompt_embeds=None,
|
| 952 |
+
ip_adapter_image=None,
|
| 953 |
+
ip_adapter_image_embeds=None,
|
| 954 |
+
callback_on_step_end_tensor_inputs=None,
|
| 955 |
+
):
|
| 956 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 957 |
+
raise ValueError(
|
| 958 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
| 959 |
+
)
|
| 960 |
+
|
| 961 |
+
if callback_steps is not None and (
|
| 962 |
+
not isinstance(callback_steps, int) or callback_steps <= 0
|
| 963 |
+
):
|
| 964 |
+
raise ValueError(
|
| 965 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 966 |
+
f" {type(callback_steps)}."
|
| 967 |
+
)
|
| 968 |
+
|
| 969 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 970 |
+
k in self._callback_tensor_inputs
|
| 971 |
+
for k in callback_on_step_end_tensor_inputs
|
| 972 |
+
):
|
| 973 |
+
raise ValueError(
|
| 974 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
if prompt is not None and prompt_embeds is not None:
|
| 978 |
+
raise ValueError(
|
| 979 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 980 |
+
" only forward one of the two."
|
| 981 |
+
)
|
| 982 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 983 |
+
raise ValueError(
|
| 984 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 985 |
+
" only forward one of the two."
|
| 986 |
+
)
|
| 987 |
+
elif prompt is None and prompt_embeds is None:
|
| 988 |
+
raise ValueError(
|
| 989 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 990 |
+
)
|
| 991 |
+
elif prompt is not None and (
|
| 992 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
| 993 |
+
):
|
| 994 |
+
raise ValueError(
|
| 995 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
| 996 |
+
)
|
| 997 |
+
elif prompt_2 is not None and (
|
| 998 |
+
not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
|
| 999 |
+
):
|
| 1000 |
+
raise ValueError(
|
| 1001 |
+
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
|
| 1002 |
+
)
|
| 1003 |
+
|
| 1004 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 1005 |
+
raise ValueError(
|
| 1006 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 1007 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 1008 |
+
)
|
| 1009 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 1010 |
+
raise ValueError(
|
| 1011 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 1012 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 1013 |
+
)
|
| 1014 |
+
|
| 1015 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 1016 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 1017 |
+
raise ValueError(
|
| 1018 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 1019 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 1020 |
+
f" {negative_prompt_embeds.shape}."
|
| 1021 |
+
)
|
| 1022 |
+
|
| 1023 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 1024 |
+
raise ValueError(
|
| 1025 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 1026 |
+
)
|
| 1027 |
+
|
| 1028 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 1029 |
+
raise ValueError(
|
| 1030 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
| 1031 |
+
)
|
| 1032 |
+
|
| 1033 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
| 1034 |
+
raise ValueError(
|
| 1035 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
| 1036 |
+
)
|
| 1037 |
+
|
| 1038 |
+
if ip_adapter_image_embeds is not None:
|
| 1039 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
| 1040 |
+
raise ValueError(
|
| 1041 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
| 1042 |
+
)
|
| 1043 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
| 1044 |
+
raise ValueError(
|
| 1045 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
| 1046 |
+
)
|
| 1047 |
+
|
| 1048 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 1049 |
+
def prepare_latents(
|
| 1050 |
+
self,
|
| 1051 |
+
batch_size,
|
| 1052 |
+
num_channels_latents,
|
| 1053 |
+
height,
|
| 1054 |
+
width,
|
| 1055 |
+
dtype,
|
| 1056 |
+
device,
|
| 1057 |
+
generator,
|
| 1058 |
+
latents=None,
|
| 1059 |
+
):
|
| 1060 |
+
shape = (
|
| 1061 |
+
batch_size,
|
| 1062 |
+
num_channels_latents,
|
| 1063 |
+
int(height) // self.vae_scale_factor,
|
| 1064 |
+
int(width) // self.vae_scale_factor,
|
| 1065 |
+
)
|
| 1066 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 1067 |
+
raise ValueError(
|
| 1068 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 1069 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 1070 |
+
)
|
| 1071 |
+
|
| 1072 |
+
if latents is None:
|
| 1073 |
+
latents = randn_tensor(
|
| 1074 |
+
shape, generator=generator, device=device, dtype=dtype
|
| 1075 |
+
)
|
| 1076 |
+
else:
|
| 1077 |
+
latents = latents.to(device)
|
| 1078 |
+
|
| 1079 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 1080 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 1081 |
+
return latents
|
| 1082 |
+
|
| 1083 |
+
def _get_add_time_ids(
|
| 1084 |
+
self,
|
| 1085 |
+
original_size,
|
| 1086 |
+
crops_coords_top_left,
|
| 1087 |
+
target_size,
|
| 1088 |
+
dtype,
|
| 1089 |
+
text_encoder_projection_dim=None,
|
| 1090 |
+
):
|
| 1091 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
| 1092 |
+
|
| 1093 |
+
passed_add_embed_dim = (
|
| 1094 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids)
|
| 1095 |
+
+ text_encoder_projection_dim
|
| 1096 |
+
)
|
| 1097 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
| 1098 |
+
|
| 1099 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
| 1100 |
+
raise ValueError(
|
| 1101 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
| 1102 |
+
)
|
| 1103 |
+
|
| 1104 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 1105 |
+
return add_time_ids
|
| 1106 |
+
|
| 1107 |
+
@property
|
| 1108 |
+
def device(self) -> torch.device:
|
| 1109 |
+
r"""
|
| 1110 |
+
Returns:
|
| 1111 |
+
`torch.device`: The torch device on which the pipeline is located.
|
| 1112 |
+
"""
|
| 1113 |
+
module_names, _ = self._get_signature_keys(self)
|
| 1114 |
+
modules = [getattr(self, n, None) for n in module_names]
|
| 1115 |
+
modules = [m for m in modules if isinstance(m, torch.nn.Module)]
|
| 1116 |
+
|
| 1117 |
+
for module in modules:
|
| 1118 |
+
return module.device
|
| 1119 |
+
|
| 1120 |
+
return torch.device("cpu")
|
| 1121 |
+
|
| 1122 |
+
@property
|
| 1123 |
+
def _execution_device(self):
|
| 1124 |
+
"""
|
| 1125 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
| 1126 |
+
[`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
|
| 1127 |
+
Accelerate's module hooks.
|
| 1128 |
+
"""
|
| 1129 |
+
for name, model in self.components.items():
|
| 1130 |
+
if (
|
| 1131 |
+
not isinstance(model, torch.nn.Module)
|
| 1132 |
+
or name in self._exclude_from_cpu_offload
|
| 1133 |
+
):
|
| 1134 |
+
continue
|
| 1135 |
+
|
| 1136 |
+
if not hasattr(model, "_hf_hook"):
|
| 1137 |
+
return self.device
|
| 1138 |
+
for module in model.modules():
|
| 1139 |
+
if (
|
| 1140 |
+
hasattr(module, "_hf_hook")
|
| 1141 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 1142 |
+
and module._hf_hook.execution_device is not None
|
| 1143 |
+
):
|
| 1144 |
+
return torch.device(module._hf_hook.execution_device)
|
| 1145 |
+
return self.device
|
| 1146 |
+
|
| 1147 |
+
def upcast_vae(self):
|
| 1148 |
+
dtype = self.vae.dtype
|
| 1149 |
+
self.vae.to(dtype=torch.float32)
|
| 1150 |
+
use_torch_2_0_or_xformers = isinstance(
|
| 1151 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1152 |
+
(
|
| 1153 |
+
AttnProcessor2_0,
|
| 1154 |
+
XFormersAttnProcessor,
|
| 1155 |
+
FusedAttnProcessor2_0,
|
| 1156 |
+
),
|
| 1157 |
+
)
|
| 1158 |
+
# if xformers or torch_2_0 is used attention block does not need
|
| 1159 |
+
# to be in float32 which can save lots of memory
|
| 1160 |
+
if use_torch_2_0_or_xformers:
|
| 1161 |
+
self.vae.post_quant_conv.to(dtype)
|
| 1162 |
+
self.vae.decoder.conv_in.to(dtype)
|
| 1163 |
+
self.vae.decoder.mid_block.to(dtype)
|
| 1164 |
+
|
| 1165 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1166 |
+
def get_guidance_scale_embedding(
|
| 1167 |
+
self,
|
| 1168 |
+
w: torch.Tensor,
|
| 1169 |
+
embedding_dim: int = 512,
|
| 1170 |
+
dtype: torch.dtype = torch.float32,
|
| 1171 |
+
) -> torch.Tensor:
|
| 1172 |
+
"""
|
| 1173 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
| 1174 |
+
|
| 1175 |
+
Args:
|
| 1176 |
+
w (`torch.Tensor`):
|
| 1177 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
| 1178 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
| 1179 |
+
Dimension of the embeddings to generate.
|
| 1180 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
| 1181 |
+
Data type of the generated embeddings.
|
| 1182 |
+
|
| 1183 |
+
Returns:
|
| 1184 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
| 1185 |
+
"""
|
| 1186 |
+
assert len(w.shape) == 1
|
| 1187 |
+
w = w * 1000.0
|
| 1188 |
+
|
| 1189 |
+
half_dim = embedding_dim // 2
|
| 1190 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
| 1191 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
| 1192 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
| 1193 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 1194 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 1195 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
| 1196 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
| 1197 |
+
return emb
|
| 1198 |
+
|
| 1199 |
+
@property
|
| 1200 |
+
def guidance_scale(self):
|
| 1201 |
+
return self._guidance_scale
|
| 1202 |
+
|
| 1203 |
+
@property
|
| 1204 |
+
def guidance_rescale(self):
|
| 1205 |
+
return self._guidance_rescale
|
| 1206 |
+
|
| 1207 |
+
@property
|
| 1208 |
+
def clip_skip(self):
|
| 1209 |
+
return self._clip_skip
|
| 1210 |
+
|
| 1211 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1212 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1213 |
+
# corresponds to doing no classifier free guidance.
|
| 1214 |
+
@property
|
| 1215 |
+
def do_classifier_free_guidance(self):
|
| 1216 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
| 1217 |
+
|
| 1218 |
+
@property
|
| 1219 |
+
def cross_attention_kwargs(self):
|
| 1220 |
+
return self._cross_attention_kwargs
|
| 1221 |
+
|
| 1222 |
+
@property
|
| 1223 |
+
def denoising_end(self):
|
| 1224 |
+
return self._denoising_end
|
| 1225 |
+
|
| 1226 |
+
@property
|
| 1227 |
+
def num_timesteps(self):
|
| 1228 |
+
return self._num_timesteps
|
| 1229 |
+
|
| 1230 |
+
@property
|
| 1231 |
+
def interrupt(self):
|
| 1232 |
+
return self._interrupt
|
| 1233 |
+
|
| 1234 |
+
@torch.no_grad()
|
| 1235 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 1236 |
+
def __call__(
|
| 1237 |
+
self,
|
| 1238 |
+
prompt: Union[str, List[str]] = None,
|
| 1239 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1240 |
+
height: Optional[int] = None,
|
| 1241 |
+
width: Optional[int] = None,
|
| 1242 |
+
num_inference_steps: int = 50,
|
| 1243 |
+
timesteps: List[int] = None,
|
| 1244 |
+
sigmas: List[float] = None,
|
| 1245 |
+
denoising_end: Optional[float] = None,
|
| 1246 |
+
guidance_scale: float = 5.0,
|
| 1247 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1248 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1249 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1250 |
+
eta: float = 0.0,
|
| 1251 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1252 |
+
latents: Optional[torch.Tensor] = None,
|
| 1253 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 1254 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1255 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1256 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1257 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 1258 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 1259 |
+
output_type: Optional[str] = "pil",
|
| 1260 |
+
return_dict: bool = True,
|
| 1261 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1262 |
+
guidance_rescale: float = 0.0,
|
| 1263 |
+
original_size: Optional[Tuple[int, int]] = None,
|
| 1264 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 1265 |
+
target_size: Optional[Tuple[int, int]] = None,
|
| 1266 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
| 1267 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 1268 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
| 1269 |
+
clip_skip: Optional[int] = None,
|
| 1270 |
+
callback_on_step_end: Optional[
|
| 1271 |
+
Union[
|
| 1272 |
+
Callable[[int, int, Dict], None],
|
| 1273 |
+
PipelineCallback,
|
| 1274 |
+
MultiPipelineCallbacks,
|
| 1275 |
+
]
|
| 1276 |
+
] = None,
|
| 1277 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 1278 |
+
**kwargs,
|
| 1279 |
+
):
|
| 1280 |
+
r"""
|
| 1281 |
+
Function invoked when calling the pipeline for generation.
|
| 1282 |
+
|
| 1283 |
+
Args:
|
| 1284 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 1285 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 1286 |
+
instead.
|
| 1287 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 1288 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 1289 |
+
used in both text-encoders
|
| 1290 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 1291 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 1292 |
+
Anything below 512 pixels won't work well for
|
| 1293 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 1294 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 1295 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 1296 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 1297 |
+
Anything below 512 pixels won't work well for
|
| 1298 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 1299 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 1300 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1301 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 1302 |
+
expense of slower inference.
|
| 1303 |
+
timesteps (`List[int]`, *optional*):
|
| 1304 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 1305 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 1306 |
+
passed will be used. Must be in descending order.
|
| 1307 |
+
sigmas (`List[float]`, *optional*):
|
| 1308 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 1309 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 1310 |
+
will be used.
|
| 1311 |
+
denoising_end (`float`, *optional*):
|
| 1312 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 1313 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
| 1314 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
| 1315 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
| 1316 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
| 1317 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
| 1318 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
| 1319 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 1320 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 1321 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 1322 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 1323 |
+
usually at the expense of lower image quality.
|
| 1324 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 1325 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 1326 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 1327 |
+
less than `1`).
|
| 1328 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 1329 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 1330 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
| 1331 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1332 |
+
The number of images to generate per prompt.
|
| 1333 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 1334 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1335 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1336 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1337 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 1338 |
+
to make generation deterministic.
|
| 1339 |
+
latents (`torch.Tensor`, *optional*):
|
| 1340 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 1341 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1342 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 1343 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 1344 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 1345 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 1346 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1347 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1348 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 1349 |
+
argument.
|
| 1350 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1351 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 1352 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 1353 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1354 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1355 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 1356 |
+
input argument.
|
| 1357 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 1358 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 1359 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 1360 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
| 1361 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
| 1362 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 1363 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1364 |
+
The output format of the generate image. Choose between
|
| 1365 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 1366 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1367 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
| 1368 |
+
of a plain tuple.
|
| 1369 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 1370 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1371 |
+
`self.processor` in
|
| 1372 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 1373 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
| 1374 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
| 1375 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
| 1376 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
| 1377 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
| 1378 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1379 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
| 1380 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
| 1381 |
+
explained in section 2.2 of
|
| 1382 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1383 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 1384 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
| 1385 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
| 1386 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1387 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1388 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1389 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
| 1390 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
| 1391 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1392 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1393 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
| 1394 |
+
micro-conditioning as explained in section 2.2 of
|
| 1395 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1396 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1397 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 1398 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
| 1399 |
+
micro-conditioning as explained in section 2.2 of
|
| 1400 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1401 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1402 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1403 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
| 1404 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1405 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1406 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1407 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 1408 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
| 1409 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
| 1410 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 1411 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
| 1412 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1413 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1414 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1415 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1416 |
+
|
| 1417 |
+
Examples:
|
| 1418 |
+
|
| 1419 |
+
Returns:
|
| 1420 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
| 1421 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
| 1422 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
| 1423 |
+
"""
|
| 1424 |
+
|
| 1425 |
+
callback = kwargs.pop("callback", None)
|
| 1426 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
| 1427 |
+
|
| 1428 |
+
if callback is not None:
|
| 1429 |
+
deprecate(
|
| 1430 |
+
"callback",
|
| 1431 |
+
"1.0.0",
|
| 1432 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
| 1433 |
+
)
|
| 1434 |
+
if callback_steps is not None:
|
| 1435 |
+
deprecate(
|
| 1436 |
+
"callback_steps",
|
| 1437 |
+
"1.0.0",
|
| 1438 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
| 1439 |
+
)
|
| 1440 |
+
|
| 1441 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 1442 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 1443 |
+
|
| 1444 |
+
# 0. Default height and width to unet
|
| 1445 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 1446 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 1447 |
+
|
| 1448 |
+
original_size = original_size or (height, width)
|
| 1449 |
+
target_size = target_size or (height, width)
|
| 1450 |
+
|
| 1451 |
+
# 1. Check inputs. Raise error if not correct
|
| 1452 |
+
self.check_inputs(
|
| 1453 |
+
prompt,
|
| 1454 |
+
prompt_2,
|
| 1455 |
+
height,
|
| 1456 |
+
width,
|
| 1457 |
+
callback_steps,
|
| 1458 |
+
negative_prompt,
|
| 1459 |
+
negative_prompt_2,
|
| 1460 |
+
prompt_embeds,
|
| 1461 |
+
negative_prompt_embeds,
|
| 1462 |
+
pooled_prompt_embeds,
|
| 1463 |
+
negative_pooled_prompt_embeds,
|
| 1464 |
+
ip_adapter_image,
|
| 1465 |
+
ip_adapter_image_embeds,
|
| 1466 |
+
callback_on_step_end_tensor_inputs,
|
| 1467 |
+
)
|
| 1468 |
+
|
| 1469 |
+
self._guidance_scale = guidance_scale
|
| 1470 |
+
self._guidance_rescale = guidance_rescale
|
| 1471 |
+
self._clip_skip = clip_skip
|
| 1472 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 1473 |
+
self._denoising_end = denoising_end
|
| 1474 |
+
self._interrupt = False
|
| 1475 |
+
|
| 1476 |
+
# 2. Define call parameters
|
| 1477 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1478 |
+
batch_size = 1
|
| 1479 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1480 |
+
batch_size = len(prompt)
|
| 1481 |
+
else:
|
| 1482 |
+
batch_size = prompt_embeds.shape[0]
|
| 1483 |
+
|
| 1484 |
+
device = self._execution_device
|
| 1485 |
+
|
| 1486 |
+
# 3. Encode input prompt
|
| 1487 |
+
lora_scale = (
|
| 1488 |
+
self.cross_attention_kwargs.get("scale", None)
|
| 1489 |
+
if self.cross_attention_kwargs is not None
|
| 1490 |
+
else None
|
| 1491 |
+
)
|
| 1492 |
+
|
| 1493 |
+
(
|
| 1494 |
+
prompt_embeds,
|
| 1495 |
+
negative_prompt_embeds,
|
| 1496 |
+
pooled_prompt_embeds,
|
| 1497 |
+
negative_pooled_prompt_embeds,
|
| 1498 |
+
) = self.encode_prompt(
|
| 1499 |
+
prompt=prompt,
|
| 1500 |
+
prompt_2=prompt_2,
|
| 1501 |
+
device=device,
|
| 1502 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1503 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1504 |
+
negative_prompt=negative_prompt,
|
| 1505 |
+
negative_prompt_2=negative_prompt_2,
|
| 1506 |
+
prompt_embeds=prompt_embeds,
|
| 1507 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1508 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1509 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1510 |
+
lora_scale=lora_scale,
|
| 1511 |
+
clip_skip=self.clip_skip,
|
| 1512 |
+
)
|
| 1513 |
+
|
| 1514 |
+
# 4. Prepare timesteps
|
| 1515 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1516 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
| 1517 |
+
)
|
| 1518 |
+
|
| 1519 |
+
# 5. Prepare latent variables
|
| 1520 |
+
num_channels_latents = self.unet.config.in_channels
|
| 1521 |
+
# breakpoint()
|
| 1522 |
+
latents = self.prepare_latents(
|
| 1523 |
+
batch_size * num_images_per_prompt,
|
| 1524 |
+
num_channels_latents,
|
| 1525 |
+
height,
|
| 1526 |
+
width,
|
| 1527 |
+
prompt_embeds.dtype,
|
| 1528 |
+
device,
|
| 1529 |
+
generator,
|
| 1530 |
+
latents,
|
| 1531 |
+
)
|
| 1532 |
+
|
| 1533 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1534 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1535 |
+
|
| 1536 |
+
# 7. Prepare added time ids & embeddings
|
| 1537 |
+
add_text_embeds = pooled_prompt_embeds
|
| 1538 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
| 1539 |
+
|
| 1540 |
+
add_time_ids = self._get_add_time_ids(
|
| 1541 |
+
original_size,
|
| 1542 |
+
crops_coords_top_left,
|
| 1543 |
+
target_size,
|
| 1544 |
+
dtype=prompt_embeds.dtype,
|
| 1545 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1546 |
+
)
|
| 1547 |
+
if negative_original_size is not None and negative_target_size is not None:
|
| 1548 |
+
negative_add_time_ids = self._get_add_time_ids(
|
| 1549 |
+
negative_original_size,
|
| 1550 |
+
negative_crops_coords_top_left,
|
| 1551 |
+
negative_target_size,
|
| 1552 |
+
dtype=prompt_embeds.dtype,
|
| 1553 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1554 |
+
)
|
| 1555 |
+
else:
|
| 1556 |
+
negative_add_time_ids = add_time_ids
|
| 1557 |
+
|
| 1558 |
+
if self.do_classifier_free_guidance:
|
| 1559 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1560 |
+
add_text_embeds = torch.cat(
|
| 1561 |
+
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
| 1562 |
+
)
|
| 1563 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
| 1564 |
+
|
| 1565 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 1566 |
+
add_text_embeds = add_text_embeds.to(device)
|
| 1567 |
+
add_time_ids = add_time_ids.to(device).repeat(
|
| 1568 |
+
batch_size * num_images_per_prompt, 1
|
| 1569 |
+
)
|
| 1570 |
+
|
| 1571 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1572 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 1573 |
+
ip_adapter_image,
|
| 1574 |
+
ip_adapter_image_embeds,
|
| 1575 |
+
device,
|
| 1576 |
+
batch_size * num_images_per_prompt,
|
| 1577 |
+
self.do_classifier_free_guidance,
|
| 1578 |
+
)
|
| 1579 |
+
|
| 1580 |
+
# 8. Denoising loop
|
| 1581 |
+
num_warmup_steps = max(
|
| 1582 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
| 1583 |
+
)
|
| 1584 |
+
|
| 1585 |
+
# 8.1 Apply denoising_end
|
| 1586 |
+
if (
|
| 1587 |
+
self.denoising_end is not None
|
| 1588 |
+
and isinstance(self.denoising_end, float)
|
| 1589 |
+
and self.denoising_end > 0
|
| 1590 |
+
and self.denoising_end < 1
|
| 1591 |
+
):
|
| 1592 |
+
discrete_timestep_cutoff = int(
|
| 1593 |
+
round(
|
| 1594 |
+
self.scheduler.config.num_train_timesteps
|
| 1595 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
| 1596 |
+
)
|
| 1597 |
+
)
|
| 1598 |
+
num_inference_steps = len(
|
| 1599 |
+
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
|
| 1600 |
+
)
|
| 1601 |
+
timesteps = timesteps[:num_inference_steps]
|
| 1602 |
+
|
| 1603 |
+
# 9. Optionally get Guidance Scale Embedding
|
| 1604 |
+
timestep_cond = None
|
| 1605 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
| 1606 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
| 1607 |
+
batch_size * num_images_per_prompt
|
| 1608 |
+
)
|
| 1609 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
| 1610 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
| 1611 |
+
).to(device=device, dtype=latents.dtype)
|
| 1612 |
+
|
| 1613 |
+
self._num_timesteps = len(timesteps)
|
| 1614 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1615 |
+
for i, t in enumerate(timesteps):
|
| 1616 |
+
if self.interrupt:
|
| 1617 |
+
continue
|
| 1618 |
+
|
| 1619 |
+
# expand the latents if we are doing classifier free guidance
|
| 1620 |
+
latent_model_input = (
|
| 1621 |
+
torch.cat([latents] * 2)
|
| 1622 |
+
if self.do_classifier_free_guidance
|
| 1623 |
+
else latents
|
| 1624 |
+
)
|
| 1625 |
+
|
| 1626 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 1627 |
+
latent_model_input, t
|
| 1628 |
+
)
|
| 1629 |
+
|
| 1630 |
+
# predict the noise residual
|
| 1631 |
+
added_cond_kwargs = {
|
| 1632 |
+
"text_embeds": add_text_embeds,
|
| 1633 |
+
"time_ids": add_time_ids,
|
| 1634 |
+
}
|
| 1635 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1636 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
| 1637 |
+
noise_pred = self.unet(
|
| 1638 |
+
latent_model_input,
|
| 1639 |
+
t,
|
| 1640 |
+
encoder_hidden_states=prompt_embeds,
|
| 1641 |
+
timestep_cond=timestep_cond,
|
| 1642 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 1643 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1644 |
+
return_dict=False,
|
| 1645 |
+
)[0]
|
| 1646 |
+
|
| 1647 |
+
# perform guidance
|
| 1648 |
+
if self.do_classifier_free_guidance:
|
| 1649 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1650 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
| 1651 |
+
noise_pred_text - noise_pred_uncond
|
| 1652 |
+
)
|
| 1653 |
+
|
| 1654 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
| 1655 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 1656 |
+
noise_pred = rescale_noise_cfg(
|
| 1657 |
+
noise_pred,
|
| 1658 |
+
noise_pred_text,
|
| 1659 |
+
guidance_rescale=self.guidance_rescale,
|
| 1660 |
+
)
|
| 1661 |
+
|
| 1662 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1663 |
+
latents_dtype = latents.dtype
|
| 1664 |
+
latents = self.scheduler.step(
|
| 1665 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
| 1666 |
+
)[0]
|
| 1667 |
+
if latents.dtype != latents_dtype:
|
| 1668 |
+
if torch.backends.mps.is_available():
|
| 1669 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1670 |
+
latents = latents.to(latents_dtype)
|
| 1671 |
+
|
| 1672 |
+
if callback_on_step_end is not None:
|
| 1673 |
+
callback_kwargs = {}
|
| 1674 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1675 |
+
callback_kwargs[k] = locals()[k]
|
| 1676 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1677 |
+
|
| 1678 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1679 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1680 |
+
negative_prompt_embeds = callback_outputs.pop(
|
| 1681 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
| 1682 |
+
)
|
| 1683 |
+
add_text_embeds = callback_outputs.pop(
|
| 1684 |
+
"add_text_embeds", add_text_embeds
|
| 1685 |
+
)
|
| 1686 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
| 1687 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
| 1688 |
+
)
|
| 1689 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
| 1690 |
+
negative_add_time_ids = callback_outputs.pop(
|
| 1691 |
+
"negative_add_time_ids", negative_add_time_ids
|
| 1692 |
+
)
|
| 1693 |
+
|
| 1694 |
+
# call the callback, if provided
|
| 1695 |
+
if i == len(timesteps) - 1 or (
|
| 1696 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 1697 |
+
):
|
| 1698 |
+
progress_bar.update()
|
| 1699 |
+
if callback is not None and i % callback_steps == 0:
|
| 1700 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1701 |
+
callback(step_idx, t, latents)
|
| 1702 |
+
|
| 1703 |
+
if XLA_AVAILABLE:
|
| 1704 |
+
xm.mark_step()
|
| 1705 |
+
|
| 1706 |
+
if not output_type == "latent":
|
| 1707 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 1708 |
+
needs_upcasting = (
|
| 1709 |
+
self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 1710 |
+
)
|
| 1711 |
+
|
| 1712 |
+
if needs_upcasting:
|
| 1713 |
+
self.upcast_vae()
|
| 1714 |
+
latents = latents.to(
|
| 1715 |
+
next(iter(self.vae.post_quant_conv.parameters())).dtype
|
| 1716 |
+
)
|
| 1717 |
+
elif latents.dtype != self.vae.dtype:
|
| 1718 |
+
if torch.backends.mps.is_available():
|
| 1719 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1720 |
+
self.vae = self.vae.to(latents.dtype)
|
| 1721 |
+
|
| 1722 |
+
# unscale/denormalize the latents
|
| 1723 |
+
# denormalize with the mean and std if available and not None
|
| 1724 |
+
has_latents_mean = (
|
| 1725 |
+
hasattr(self.vae.config, "latents_mean")
|
| 1726 |
+
and self.vae.config.latents_mean is not None
|
| 1727 |
+
)
|
| 1728 |
+
has_latents_std = (
|
| 1729 |
+
hasattr(self.vae.config, "latents_std")
|
| 1730 |
+
and self.vae.config.latents_std is not None
|
| 1731 |
+
)
|
| 1732 |
+
if has_latents_mean and has_latents_std:
|
| 1733 |
+
latents_mean = (
|
| 1734 |
+
torch.tensor(self.vae.config.latents_mean)
|
| 1735 |
+
.view(1, 4, 1, 1)
|
| 1736 |
+
.to(latents.device, latents.dtype)
|
| 1737 |
+
)
|
| 1738 |
+
latents_std = (
|
| 1739 |
+
torch.tensor(self.vae.config.latents_std)
|
| 1740 |
+
.view(1, 4, 1, 1)
|
| 1741 |
+
.to(latents.device, latents.dtype)
|
| 1742 |
+
)
|
| 1743 |
+
latents = (
|
| 1744 |
+
latents * latents_std / self.vae.config.scaling_factor
|
| 1745 |
+
+ latents_mean
|
| 1746 |
+
)
|
| 1747 |
+
else:
|
| 1748 |
+
latents = latents / self.vae.config.scaling_factor
|
| 1749 |
+
|
| 1750 |
+
image = self.vae.decode(latents)
|
| 1751 |
+
|
| 1752 |
+
# cast back to fp16 if needed
|
| 1753 |
+
if needs_upcasting:
|
| 1754 |
+
self.vae.to(dtype=torch.float16)
|
| 1755 |
+
else:
|
| 1756 |
+
image = latents
|
| 1757 |
+
|
| 1758 |
+
if not output_type == "latent":
|
| 1759 |
+
# apply watermark if available
|
| 1760 |
+
# if self.watermark is not None:
|
| 1761 |
+
# image = self.watermark.apply_watermark(image)
|
| 1762 |
+
|
| 1763 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1764 |
+
|
| 1765 |
+
# Offload all models
|
| 1766 |
+
self.maybe_free_model_hooks()
|
| 1767 |
+
|
| 1768 |
+
if not return_dict:
|
| 1769 |
+
return (image,)
|
| 1770 |
+
|
| 1771 |
+
return AniMemoryPipelineOutput(images=image)
|
scheduler/scheduler_config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_class_name": "
|
| 3 |
"_diffusers_version": "0.26.0",
|
| 4 |
"beta_end": 0.012,
|
| 5 |
"beta_schedule": "scaled_linear",
|
|
|
|
| 1 |
{
|
| 2 |
+
"_class_name": "EulerAncestralDiscreteXPredScheduler",
|
| 3 |
"_diffusers_version": "0.26.0",
|
| 4 |
"beta_end": 0.012,
|
| 5 |
"beta_schedule": "scaled_linear",
|
scheduler/scheduling_euler_ancestral_discrete_x_pred.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Katherine Crowson, AniMemory Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import List, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
from diffusers.utils import logging
|
| 21 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 22 |
+
from diffusers.schedulers.scheduling_euler_ancestral_discrete import (
|
| 23 |
+
EulerAncestralDiscreteScheduler,
|
| 24 |
+
EulerAncestralDiscreteSchedulerOutput,
|
| 25 |
+
rescale_zero_terminal_snr,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class EulerAncestralDiscreteXPredScheduler(EulerAncestralDiscreteScheduler):
|
| 33 |
+
"""
|
| 34 |
+
Ancestral sampling with Euler method steps. This model inherits from [`EulerAncestralDiscreteScheduler`]. Check the
|
| 35 |
+
superclass documentation for the args and returns.
|
| 36 |
+
|
| 37 |
+
For more details, see the original paper: https://arxiv.org/abs/2403.08381
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
num_train_timesteps: int = 1000,
|
| 43 |
+
beta_start: float = 0.0001,
|
| 44 |
+
beta_end: float = 0.02,
|
| 45 |
+
beta_schedule: str = "linear",
|
| 46 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
| 47 |
+
prediction_type: str = "epsilon",
|
| 48 |
+
timestep_spacing: str = "linspace",
|
| 49 |
+
steps_offset: int = 0,
|
| 50 |
+
):
|
| 51 |
+
super(EulerAncestralDiscreteXPredScheduler, self).__init__(
|
| 52 |
+
num_train_timesteps,
|
| 53 |
+
beta_start,
|
| 54 |
+
beta_end,
|
| 55 |
+
beta_schedule,
|
| 56 |
+
trained_betas,
|
| 57 |
+
prediction_type,
|
| 58 |
+
timestep_spacing,
|
| 59 |
+
steps_offset,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5, dtype=np.float32)
|
| 63 |
+
self.sigmas = torch.from_numpy(sigmas)
|
| 64 |
+
|
| 65 |
+
def rescale_betas_zero_snr(self):
|
| 66 |
+
self.betas = rescale_zero_terminal_snr(self.betas)
|
| 67 |
+
self.alphas = 1.0 - self.betas
|
| 68 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
| 69 |
+
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5)
|
| 70 |
+
self.sigmas = torch.from_numpy(sigmas)
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def init_noise_sigma(self):
|
| 74 |
+
return 1.0
|
| 75 |
+
|
| 76 |
+
def scale_model_input(
|
| 77 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
| 78 |
+
) -> torch.FloatTensor:
|
| 79 |
+
self.is_scale_input_called = True
|
| 80 |
+
# standard deviation of the initial noise distribution
|
| 81 |
+
return sample
|
| 82 |
+
|
| 83 |
+
def set_timesteps(
|
| 84 |
+
self, num_inference_steps: int, device: Union[str, torch.device] = None
|
| 85 |
+
):
|
| 86 |
+
"""
|
| 87 |
+
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
num_inference_steps (`int`):
|
| 91 |
+
the number of diffusion steps used when generating samples with a pre-trained model.
|
| 92 |
+
device (`str` or `torch.device`, optional):
|
| 93 |
+
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 94 |
+
"""
|
| 95 |
+
self.num_inference_steps = num_inference_steps
|
| 96 |
+
|
| 97 |
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
| 98 |
+
if self.config.timestep_spacing == "linspace":
|
| 99 |
+
timesteps = np.linspace(
|
| 100 |
+
0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float
|
| 101 |
+
)[::-1].copy()
|
| 102 |
+
elif self.config.timestep_spacing == "leading":
|
| 103 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
| 104 |
+
# creates integer timesteps by multiplying by ratio
|
| 105 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
| 106 |
+
timesteps = (
|
| 107 |
+
(np.arange(0, num_inference_steps) * step_ratio)
|
| 108 |
+
.round()[::-1]
|
| 109 |
+
.copy()
|
| 110 |
+
.astype(float)
|
| 111 |
+
)
|
| 112 |
+
timesteps += self.config.steps_offset
|
| 113 |
+
elif self.config.timestep_spacing == "trailing":
|
| 114 |
+
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
| 115 |
+
# creates integer timesteps by multiplying by ratio
|
| 116 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
| 117 |
+
timesteps = (
|
| 118 |
+
(np.arange(self.config.num_train_timesteps, 0, -step_ratio))
|
| 119 |
+
.round()
|
| 120 |
+
.copy()
|
| 121 |
+
.astype(float)
|
| 122 |
+
)
|
| 123 |
+
timesteps -= 1
|
| 124 |
+
else:
|
| 125 |
+
raise ValueError(
|
| 126 |
+
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5)
|
| 130 |
+
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
| 131 |
+
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
| 132 |
+
|
| 133 |
+
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
| 134 |
+
if str(device).startswith("mps"):
|
| 135 |
+
# mps does not support float64
|
| 136 |
+
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
|
| 137 |
+
else:
|
| 138 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
| 139 |
+
|
| 140 |
+
def step(
|
| 141 |
+
self,
|
| 142 |
+
model_output: torch.FloatTensor,
|
| 143 |
+
timestep: Union[float, torch.FloatTensor],
|
| 144 |
+
sample: torch.FloatTensor,
|
| 145 |
+
generator: Optional[torch.Generator] = None,
|
| 146 |
+
return_dict: bool = True,
|
| 147 |
+
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
| 148 |
+
"""
|
| 149 |
+
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
| 150 |
+
process from the learned model outputs (most often the predicted noise).
|
| 151 |
+
|
| 152 |
+
Args:
|
| 153 |
+
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
| 154 |
+
timestep (`float`): current timestep in the diffusion chain.
|
| 155 |
+
sample (`torch.FloatTensor`):
|
| 156 |
+
current instance of sample being created by diffusion process.
|
| 157 |
+
generator (`torch.Generator`, optional): Random number generator.
|
| 158 |
+
return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
[`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
| 162 |
+
[`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise
|
| 163 |
+
a `tuple`. When returning a tuple, the first element is the sample tensor.
|
| 164 |
+
|
| 165 |
+
"""
|
| 166 |
+
|
| 167 |
+
if (
|
| 168 |
+
isinstance(timestep, int)
|
| 169 |
+
or isinstance(timestep, torch.IntTensor)
|
| 170 |
+
or isinstance(timestep, torch.LongTensor)
|
| 171 |
+
):
|
| 172 |
+
raise ValueError(
|
| 173 |
+
(
|
| 174 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
| 175 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
| 176 |
+
" one of the `scheduler.timesteps` as a timestep."
|
| 177 |
+
),
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
if isinstance(timestep, torch.Tensor):
|
| 181 |
+
timestep = timestep.to(self.timesteps.device)
|
| 182 |
+
|
| 183 |
+
step_index = (self.timesteps == timestep).nonzero().item()
|
| 184 |
+
|
| 185 |
+
if self.config.prediction_type == "sample":
|
| 186 |
+
pred_original_sample = model_output
|
| 187 |
+
else:
|
| 188 |
+
raise ValueError(
|
| 189 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
sigma_t = self.sigmas[step_index]
|
| 193 |
+
sigma_s = self.sigmas[step_index + 1]
|
| 194 |
+
alpha_t = (1 - sigma_t**2) ** 0.5
|
| 195 |
+
alpha_s = (1 - sigma_s**2) ** 0.5
|
| 196 |
+
|
| 197 |
+
coef_sample = (sigma_s / sigma_t) ** 2 * alpha_t / alpha_s
|
| 198 |
+
coef_noise = (sigma_s / sigma_t) * (1 - (alpha_t / alpha_s) ** 2) ** 0.5
|
| 199 |
+
coef_x = alpha_s * (1 - alpha_t**2 / alpha_s**2) / sigma_t**2
|
| 200 |
+
|
| 201 |
+
device = model_output.device
|
| 202 |
+
noise = randn_tensor(
|
| 203 |
+
model_output.shape,
|
| 204 |
+
dtype=model_output.dtype,
|
| 205 |
+
device=device,
|
| 206 |
+
generator=generator,
|
| 207 |
+
)
|
| 208 |
+
prev_sample = (
|
| 209 |
+
coef_sample * sample + coef_x * pred_original_sample + coef_noise * noise
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
if not return_dict:
|
| 213 |
+
return (prev_sample,)
|
| 214 |
+
|
| 215 |
+
return EulerAncestralDiscreteSchedulerOutput(
|
| 216 |
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
def add_noise(
|
| 220 |
+
self,
|
| 221 |
+
original_samples: torch.FloatTensor,
|
| 222 |
+
noise: torch.FloatTensor,
|
| 223 |
+
timesteps: torch.FloatTensor,
|
| 224 |
+
) -> torch.FloatTensor:
|
| 225 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
| 226 |
+
sigmas = self.sigmas.to(
|
| 227 |
+
device=original_samples.device, dtype=original_samples.dtype
|
| 228 |
+
)
|
| 229 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
| 230 |
+
# mps does not support float64
|
| 231 |
+
schedule_timesteps = self.timesteps.to(
|
| 232 |
+
original_samples.device, dtype=torch.float32
|
| 233 |
+
)
|
| 234 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
| 235 |
+
else:
|
| 236 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
| 237 |
+
timesteps = timesteps.to(original_samples.device)
|
| 238 |
+
|
| 239 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
| 240 |
+
|
| 241 |
+
sigma = sigmas[step_indices].flatten()
|
| 242 |
+
while len(sigma.shape) < len(original_samples.shape):
|
| 243 |
+
sigma = sigma.unsqueeze(-1)
|
| 244 |
+
|
| 245 |
+
noisy_samples = original_samples + noise * sigma
|
| 246 |
+
return noisy_samples
|
text_encoder/animemory_t5.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
+
from transformers.models.t5.configuration_t5 import T5Config
|
| 20 |
+
from transformers.models.t5.modeling_t5 import T5Stack
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class AniMemoryT5(torch.nn.Module):
|
| 24 |
+
def __init__(self, config: T5Config, embed_tokens=None):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.encoder = T5Stack(config, embed_tokens)
|
| 27 |
+
self.embed_tokens_encoder = torch.nn.Embedding(250002, 4096, padding_idx=1)
|
| 28 |
+
|
| 29 |
+
@classmethod
|
| 30 |
+
def from_pretrained(
|
| 31 |
+
cls,
|
| 32 |
+
pretrained_model_name_or_path,
|
| 33 |
+
subfolder="",
|
| 34 |
+
embed_tokens=None,
|
| 35 |
+
emb_name="weights.safetensors",
|
| 36 |
+
torch_dtype=torch.float16,
|
| 37 |
+
):
|
| 38 |
+
cls.dtype = torch_dtype
|
| 39 |
+
config = T5Stack.config_class.from_pretrained(
|
| 40 |
+
pretrained_model_name_or_path, subfolder=subfolder
|
| 41 |
+
)
|
| 42 |
+
model = cls(config=config, embed_tokens=embed_tokens)
|
| 43 |
+
model.encoder = T5Stack.from_pretrained(
|
| 44 |
+
pretrained_model_name_or_path, subfolder=subfolder
|
| 45 |
+
)
|
| 46 |
+
embed_tokens_encoder_path = load_file(
|
| 47 |
+
os.path.join(pretrained_model_name_or_path, subfolder, emb_name)
|
| 48 |
+
)
|
| 49 |
+
model.embed_tokens_encoder.load_state_dict(embed_tokens_encoder_path)
|
| 50 |
+
model.encoder.to(torch_dtype)
|
| 51 |
+
model.embed_tokens_encoder.to(torch_dtype)
|
| 52 |
+
return model
|
| 53 |
+
|
| 54 |
+
def to(self, *args, **kwargs):
|
| 55 |
+
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
|
| 56 |
+
*args, **kwargs
|
| 57 |
+
)
|
| 58 |
+
super(AniMemoryT5, self).to(*args, **kwargs)
|
| 59 |
+
self.dtype = dtype if dtype is not None else self.dtype
|
| 60 |
+
self.device = device if device is not None else self.device
|
| 61 |
+
return self
|
| 62 |
+
|
| 63 |
+
def make_attn_mask(self, attn_mask):
|
| 64 |
+
seq_len = attn_mask.shape[1]
|
| 65 |
+
query = attn_mask.unsqueeze(1).float()
|
| 66 |
+
attn_mask = (
|
| 67 |
+
query.repeat([1, seq_len, 1]).unsqueeze(1).repeat([1, self.num_head, 1, 1])
|
| 68 |
+
)
|
| 69 |
+
attn_mask = attn_mask.view([-1, seq_len, seq_len])
|
| 70 |
+
return attn_mask
|
| 71 |
+
|
| 72 |
+
def forward(self, text, attention_mask):
|
| 73 |
+
embeddings = self.embed_tokens_encoder(text)
|
| 74 |
+
encoder_outputs = self.encoder(
|
| 75 |
+
inputs_embeds=embeddings,
|
| 76 |
+
attention_mask=attention_mask,
|
| 77 |
+
output_hidden_states=True,
|
| 78 |
+
)
|
| 79 |
+
hidden_states = encoder_outputs.hidden_states[-2]
|
| 80 |
+
hidden_states = self.encoder.final_layer_norm(hidden_states)
|
| 81 |
+
return hidden_states, hidden_states
|
text_encoder_2/animemory_altclip.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
+
from transformers import CLIPTextConfig, CLIPTextModelWithProjection
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class AniMemoryAltCLip(torch.nn.Module):
|
| 23 |
+
def __init__(self, config: CLIPTextConfig):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.model_hf = CLIPTextModelWithProjection(config)
|
| 26 |
+
self.linear_proj = torch.nn.Linear(in_features=1280, out_features=1280)
|
| 27 |
+
|
| 28 |
+
@classmethod
|
| 29 |
+
def from_pretrained(
|
| 30 |
+
cls,
|
| 31 |
+
pretrained_model_name_or_path,
|
| 32 |
+
subfolder="",
|
| 33 |
+
linear_proj_name="weights.safetensors",
|
| 34 |
+
torch_dtype=torch.float16,
|
| 35 |
+
):
|
| 36 |
+
cls.dtype = torch_dtype
|
| 37 |
+
config = CLIPTextModelWithProjection.config_class.from_pretrained(
|
| 38 |
+
pretrained_model_name_or_path, subfolder=subfolder
|
| 39 |
+
)
|
| 40 |
+
model = cls(config=config)
|
| 41 |
+
model.model_hf = CLIPTextModelWithProjection.from_pretrained(
|
| 42 |
+
pretrained_model_name_or_path, subfolder=subfolder
|
| 43 |
+
)
|
| 44 |
+
linear_proj_state = load_file(
|
| 45 |
+
os.path.join(pretrained_model_name_or_path, subfolder, linear_proj_name)
|
| 46 |
+
)
|
| 47 |
+
model.linear_proj.load_state_dict(linear_proj_state)
|
| 48 |
+
return model
|
| 49 |
+
|
| 50 |
+
def to(self, *args, **kwargs):
|
| 51 |
+
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
|
| 52 |
+
*args, **kwargs
|
| 53 |
+
)
|
| 54 |
+
super(AniMemoryAltCLip, self).to(*args, **kwargs)
|
| 55 |
+
self.dtype = dtype if dtype is not None else self.dtype
|
| 56 |
+
self.device = device if device is not None else self.device
|
| 57 |
+
return self
|
| 58 |
+
|
| 59 |
+
def expand_mask(self, mask=None, dtype="", tgt_len=None):
|
| 60 |
+
"""
|
| 61 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 62 |
+
"""
|
| 63 |
+
bsz, src_len = mask.size()
|
| 64 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 65 |
+
|
| 66 |
+
expanded_mask = (
|
| 67 |
+
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
inverted_mask = 1.0 - expanded_mask
|
| 71 |
+
|
| 72 |
+
return inverted_mask.masked_fill(
|
| 73 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def make_attn_mask(self, attn_mask):
|
| 77 |
+
seq_len = attn_mask.shape[1]
|
| 78 |
+
query = attn_mask.unsqueeze(1).float()
|
| 79 |
+
attn_mask = (
|
| 80 |
+
query.repeat([1, seq_len, 1]).unsqueeze(1).repeat([1, self.num_head, 1, 1])
|
| 81 |
+
)
|
| 82 |
+
attn_mask = attn_mask.view([-1, seq_len, seq_len])
|
| 83 |
+
return attn_mask
|
| 84 |
+
|
| 85 |
+
def gradient_checkpointing_enable(
|
| 86 |
+
self,
|
| 87 |
+
):
|
| 88 |
+
self.model_hf.gradient_checkpointing_enable()
|
| 89 |
+
|
| 90 |
+
def forward(self, text, attention_mask):
|
| 91 |
+
hidden_states = self.model_hf.text_model.embeddings(
|
| 92 |
+
input_ids=text, position_ids=None
|
| 93 |
+
)
|
| 94 |
+
if attention_mask is None:
|
| 95 |
+
print("Warning: attention_mask is None in altclip!")
|
| 96 |
+
new_attn_mask = (
|
| 97 |
+
self.expand_mask(attention_mask, hidden_states.dtype)
|
| 98 |
+
if attention_mask is not None
|
| 99 |
+
else None
|
| 100 |
+
)
|
| 101 |
+
encoder_outputs = self.model_hf.text_model.encoder(
|
| 102 |
+
inputs_embeds=hidden_states,
|
| 103 |
+
attention_mask=new_attn_mask,
|
| 104 |
+
causal_attention_mask=None,
|
| 105 |
+
output_attentions=False,
|
| 106 |
+
output_hidden_states=True,
|
| 107 |
+
return_dict=True,
|
| 108 |
+
)
|
| 109 |
+
last_hidden_state = encoder_outputs[0]
|
| 110 |
+
last_hidden_state = self.model_hf.text_model.final_layer_norm(last_hidden_state)
|
| 111 |
+
last_hidden_state = (
|
| 112 |
+
last_hidden_state[torch.arange(last_hidden_state.shape[0]), 0]
|
| 113 |
+
@ self.model_hf.text_projection.weight
|
| 114 |
+
)
|
| 115 |
+
pooled_output = self.linear_proj(last_hidden_state)
|
| 116 |
+
|
| 117 |
+
extra_features = encoder_outputs.hidden_states[-2]
|
| 118 |
+
extra_features = self.model_hf.text_model.final_layer_norm(extra_features)
|
| 119 |
+
return extra_features, pooled_output
|
vae/modeling_movq.py
ADDED
|
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Kandinsky 3.0 Model Team, AniMemory Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import json
|
| 16 |
+
import os
|
| 17 |
+
from types import SimpleNamespace
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
from packaging import version
|
| 22 |
+
from safetensors.torch import load_file
|
| 23 |
+
|
| 24 |
+
from diffusers.utils.accelerate_utils import apply_forward_hook
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def nonlinearity(x):
|
| 28 |
+
return x * torch.sigmoid(x)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class SpatialNorm(nn.Module):
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
f_channels,
|
| 35 |
+
zq_channels=None,
|
| 36 |
+
norm_layer=nn.GroupNorm,
|
| 37 |
+
freeze_norm_layer=False,
|
| 38 |
+
add_conv=False,
|
| 39 |
+
**norm_layer_params,
|
| 40 |
+
):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params)
|
| 43 |
+
if zq_channels is not None:
|
| 44 |
+
if freeze_norm_layer:
|
| 45 |
+
for p in self.norm_layer.parameters:
|
| 46 |
+
p.requires_grad = False
|
| 47 |
+
self.add_conv = add_conv
|
| 48 |
+
if self.add_conv:
|
| 49 |
+
self.conv = nn.Conv2d(
|
| 50 |
+
zq_channels, zq_channels, kernel_size=3, stride=1, padding=1
|
| 51 |
+
)
|
| 52 |
+
self.conv_y = nn.Conv2d(
|
| 53 |
+
zq_channels, f_channels, kernel_size=1, stride=1, padding=0
|
| 54 |
+
)
|
| 55 |
+
self.conv_b = nn.Conv2d(
|
| 56 |
+
zq_channels, f_channels, kernel_size=1, stride=1, padding=0
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
def forward(self, f, zq=None):
|
| 60 |
+
norm_f = self.norm_layer(f)
|
| 61 |
+
if zq is not None:
|
| 62 |
+
f_size = f.shape[-2:]
|
| 63 |
+
if (
|
| 64 |
+
version.parse(torch.__version__) < version.parse("2.1")
|
| 65 |
+
and zq.dtype == torch.bfloat16
|
| 66 |
+
):
|
| 67 |
+
zq = zq.to(dtype=torch.float32)
|
| 68 |
+
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
|
| 69 |
+
zq = zq.to(dtype=torch.bfloat16)
|
| 70 |
+
else:
|
| 71 |
+
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
|
| 72 |
+
if self.add_conv:
|
| 73 |
+
zq = self.conv(zq)
|
| 74 |
+
norm_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
|
| 75 |
+
return norm_f
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def Normalize(in_channels, zq_ch=None, add_conv=None):
|
| 79 |
+
return SpatialNorm(
|
| 80 |
+
in_channels,
|
| 81 |
+
zq_ch,
|
| 82 |
+
norm_layer=nn.GroupNorm,
|
| 83 |
+
freeze_norm_layer=False,
|
| 84 |
+
add_conv=add_conv,
|
| 85 |
+
num_groups=32,
|
| 86 |
+
eps=1e-6,
|
| 87 |
+
affine=True,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class Upsample(nn.Module):
|
| 92 |
+
def __init__(self, in_channels, with_conv):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.with_conv = with_conv
|
| 95 |
+
if self.with_conv:
|
| 96 |
+
self.conv = torch.nn.Conv2d(
|
| 97 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def forward(self, x):
|
| 101 |
+
if (
|
| 102 |
+
version.parse(torch.__version__) < version.parse("2.1")
|
| 103 |
+
and x.dtype == torch.bfloat16
|
| 104 |
+
):
|
| 105 |
+
x = x.to(dtype=torch.float32)
|
| 106 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 107 |
+
x = x.to(dtype=torch.bfloat16)
|
| 108 |
+
else:
|
| 109 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 110 |
+
if self.with_conv:
|
| 111 |
+
x = self.conv(x)
|
| 112 |
+
return x
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class Downsample(nn.Module):
|
| 116 |
+
def __init__(self, in_channels, with_conv):
|
| 117 |
+
super().__init__()
|
| 118 |
+
self.with_conv = with_conv
|
| 119 |
+
if self.with_conv:
|
| 120 |
+
self.conv = torch.nn.Conv2d(
|
| 121 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def forward(self, x):
|
| 125 |
+
if self.with_conv:
|
| 126 |
+
pad = (0, 1, 0, 1)
|
| 127 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 128 |
+
x = self.conv(x)
|
| 129 |
+
else:
|
| 130 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 131 |
+
return x
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class ResnetBlock(nn.Module):
|
| 135 |
+
def __init__(
|
| 136 |
+
self,
|
| 137 |
+
*,
|
| 138 |
+
in_channels,
|
| 139 |
+
out_channels=None,
|
| 140 |
+
conv_shortcut=False,
|
| 141 |
+
dropout,
|
| 142 |
+
temb_channels=512,
|
| 143 |
+
zq_ch=None,
|
| 144 |
+
add_conv=False,
|
| 145 |
+
):
|
| 146 |
+
super().__init__()
|
| 147 |
+
self.in_channels = in_channels
|
| 148 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 149 |
+
self.out_channels = out_channels
|
| 150 |
+
self.use_conv_shortcut = conv_shortcut
|
| 151 |
+
|
| 152 |
+
self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv)
|
| 153 |
+
self.conv1 = torch.nn.Conv2d(
|
| 154 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 155 |
+
)
|
| 156 |
+
if temb_channels > 0:
|
| 157 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
| 158 |
+
self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv)
|
| 159 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 160 |
+
self.conv2 = torch.nn.Conv2d(
|
| 161 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 162 |
+
)
|
| 163 |
+
if self.in_channels != self.out_channels:
|
| 164 |
+
if self.use_conv_shortcut:
|
| 165 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
| 166 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 167 |
+
)
|
| 168 |
+
else:
|
| 169 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
| 170 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
def forward(self, x, temb, zq=None):
|
| 174 |
+
h = x
|
| 175 |
+
h = self.norm1(h, zq)
|
| 176 |
+
h = nonlinearity(h)
|
| 177 |
+
h = self.conv1(h)
|
| 178 |
+
|
| 179 |
+
if temb is not None:
|
| 180 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
| 181 |
+
|
| 182 |
+
h = self.norm2(h, zq)
|
| 183 |
+
h = nonlinearity(h)
|
| 184 |
+
h = self.dropout(h)
|
| 185 |
+
h = self.conv2(h)
|
| 186 |
+
|
| 187 |
+
if self.in_channels != self.out_channels:
|
| 188 |
+
if self.use_conv_shortcut:
|
| 189 |
+
x = self.conv_shortcut(x)
|
| 190 |
+
else:
|
| 191 |
+
x = self.nin_shortcut(x)
|
| 192 |
+
|
| 193 |
+
return x + h
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class AttnBlock(nn.Module):
|
| 197 |
+
def __init__(self, in_channels, zq_ch=None, add_conv=False):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.in_channels = in_channels
|
| 200 |
+
|
| 201 |
+
self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv)
|
| 202 |
+
self.q = torch.nn.Conv2d(
|
| 203 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 204 |
+
)
|
| 205 |
+
self.k = torch.nn.Conv2d(
|
| 206 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 207 |
+
)
|
| 208 |
+
self.v = torch.nn.Conv2d(
|
| 209 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 210 |
+
)
|
| 211 |
+
self.proj_out = torch.nn.Conv2d(
|
| 212 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
def forward(self, x, zq=None):
|
| 216 |
+
h_ = x
|
| 217 |
+
h_ = self.norm(h_, zq)
|
| 218 |
+
q = self.q(h_)
|
| 219 |
+
k = self.k(h_)
|
| 220 |
+
v = self.v(h_)
|
| 221 |
+
|
| 222 |
+
# compute attention
|
| 223 |
+
b, c, h, w = q.shape
|
| 224 |
+
q = q.reshape(b, c, h * w)
|
| 225 |
+
q = q.permute(0, 2, 1)
|
| 226 |
+
k = k.reshape(b, c, h * w)
|
| 227 |
+
w_ = torch.bmm(q, k)
|
| 228 |
+
w_ = w_ * (int(c) ** (-0.5))
|
| 229 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 230 |
+
|
| 231 |
+
# attend to values
|
| 232 |
+
v = v.reshape(b, c, h * w)
|
| 233 |
+
w_ = w_.permute(0, 2, 1)
|
| 234 |
+
h_ = torch.bmm(v, w_)
|
| 235 |
+
h_ = h_.reshape(b, c, h, w)
|
| 236 |
+
|
| 237 |
+
h_ = self.proj_out(h_)
|
| 238 |
+
|
| 239 |
+
return x + h_
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class Encoder(nn.Module):
|
| 243 |
+
def __init__(
|
| 244 |
+
self,
|
| 245 |
+
*,
|
| 246 |
+
ch,
|
| 247 |
+
out_ch,
|
| 248 |
+
ch_mult=(1, 2, 4, 8),
|
| 249 |
+
num_res_blocks,
|
| 250 |
+
attn_resolutions,
|
| 251 |
+
dropout=0.0,
|
| 252 |
+
resamp_with_conv=True,
|
| 253 |
+
in_channels,
|
| 254 |
+
resolution,
|
| 255 |
+
z_channels,
|
| 256 |
+
double_z=True,
|
| 257 |
+
**ignore_kwargs,
|
| 258 |
+
):
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.ch = ch
|
| 261 |
+
self.temb_ch = 0
|
| 262 |
+
self.num_resolutions = len(ch_mult)
|
| 263 |
+
self.num_res_blocks = num_res_blocks
|
| 264 |
+
self.resolution = resolution
|
| 265 |
+
self.in_channels = in_channels
|
| 266 |
+
|
| 267 |
+
# downsampling
|
| 268 |
+
self.conv_in = torch.nn.Conv2d(
|
| 269 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
curr_res = resolution
|
| 273 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 274 |
+
self.down = nn.ModuleList()
|
| 275 |
+
for i_level in range(self.num_resolutions):
|
| 276 |
+
block = nn.ModuleList()
|
| 277 |
+
attn = nn.ModuleList()
|
| 278 |
+
block_in = ch * in_ch_mult[i_level]
|
| 279 |
+
block_out = ch * ch_mult[i_level]
|
| 280 |
+
for i_block in range(self.num_res_blocks):
|
| 281 |
+
block.append(
|
| 282 |
+
ResnetBlock(
|
| 283 |
+
in_channels=block_in,
|
| 284 |
+
out_channels=block_out,
|
| 285 |
+
temb_channels=self.temb_ch,
|
| 286 |
+
dropout=dropout,
|
| 287 |
+
)
|
| 288 |
+
)
|
| 289 |
+
block_in = block_out
|
| 290 |
+
if curr_res in attn_resolutions:
|
| 291 |
+
attn.append(AttnBlock(block_in))
|
| 292 |
+
down = nn.Module()
|
| 293 |
+
down.block = block
|
| 294 |
+
down.attn = attn
|
| 295 |
+
if i_level != self.num_resolutions - 1:
|
| 296 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 297 |
+
curr_res = curr_res // 2
|
| 298 |
+
self.down.append(down)
|
| 299 |
+
|
| 300 |
+
# middle
|
| 301 |
+
self.mid = nn.Module()
|
| 302 |
+
self.mid.block_1 = ResnetBlock(
|
| 303 |
+
in_channels=block_in,
|
| 304 |
+
out_channels=block_in,
|
| 305 |
+
temb_channels=self.temb_ch,
|
| 306 |
+
dropout=dropout,
|
| 307 |
+
)
|
| 308 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 309 |
+
self.mid.block_2 = ResnetBlock(
|
| 310 |
+
in_channels=block_in,
|
| 311 |
+
out_channels=block_in,
|
| 312 |
+
temb_channels=self.temb_ch,
|
| 313 |
+
dropout=dropout,
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
# end
|
| 317 |
+
self.norm_out = Normalize(block_in)
|
| 318 |
+
self.conv_out = torch.nn.Conv2d(
|
| 319 |
+
block_in,
|
| 320 |
+
2 * z_channels if double_z else z_channels,
|
| 321 |
+
kernel_size=3,
|
| 322 |
+
stride=1,
|
| 323 |
+
padding=1,
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
def forward(self, x):
|
| 327 |
+
temb = None
|
| 328 |
+
|
| 329 |
+
# downsampling
|
| 330 |
+
hs = [self.conv_in(x)]
|
| 331 |
+
for i_level in range(self.num_resolutions):
|
| 332 |
+
for i_block in range(self.num_res_blocks):
|
| 333 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 334 |
+
if len(self.down[i_level].attn) > 0:
|
| 335 |
+
h = self.down[i_level].attn[i_block](h)
|
| 336 |
+
hs.append(h)
|
| 337 |
+
if i_level != self.num_resolutions - 1:
|
| 338 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 339 |
+
|
| 340 |
+
# middle
|
| 341 |
+
h = hs[-1]
|
| 342 |
+
h = self.mid.block_1(h, temb)
|
| 343 |
+
h = self.mid.attn_1(h)
|
| 344 |
+
h = self.mid.block_2(h, temb)
|
| 345 |
+
|
| 346 |
+
# end
|
| 347 |
+
h = self.norm_out(h)
|
| 348 |
+
h = nonlinearity(h)
|
| 349 |
+
h = self.conv_out(h)
|
| 350 |
+
return h
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
class Decoder(nn.Module):
|
| 354 |
+
def __init__(
|
| 355 |
+
self,
|
| 356 |
+
*,
|
| 357 |
+
ch,
|
| 358 |
+
out_ch,
|
| 359 |
+
ch_mult=(1, 2, 4, 8),
|
| 360 |
+
num_res_blocks,
|
| 361 |
+
attn_resolutions,
|
| 362 |
+
dropout=0.0,
|
| 363 |
+
resamp_with_conv=True,
|
| 364 |
+
in_channels,
|
| 365 |
+
resolution,
|
| 366 |
+
z_channels,
|
| 367 |
+
give_pre_end=False,
|
| 368 |
+
zq_ch=None,
|
| 369 |
+
add_conv=False,
|
| 370 |
+
**ignorekwargs,
|
| 371 |
+
):
|
| 372 |
+
super().__init__()
|
| 373 |
+
self.ch = ch
|
| 374 |
+
self.temb_ch = 0
|
| 375 |
+
self.num_resolutions = len(ch_mult)
|
| 376 |
+
self.num_res_blocks = num_res_blocks
|
| 377 |
+
self.resolution = resolution
|
| 378 |
+
self.in_channels = in_channels
|
| 379 |
+
self.give_pre_end = give_pre_end
|
| 380 |
+
|
| 381 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
| 382 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 383 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
| 384 |
+
|
| 385 |
+
# z to block_in
|
| 386 |
+
self.conv_in = torch.nn.Conv2d(
|
| 387 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
# middle
|
| 391 |
+
self.mid = nn.Module()
|
| 392 |
+
self.mid.block_1 = ResnetBlock(
|
| 393 |
+
in_channels=block_in,
|
| 394 |
+
out_channels=block_in,
|
| 395 |
+
temb_channels=self.temb_ch,
|
| 396 |
+
dropout=dropout,
|
| 397 |
+
zq_ch=zq_ch,
|
| 398 |
+
add_conv=add_conv,
|
| 399 |
+
)
|
| 400 |
+
self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv)
|
| 401 |
+
self.mid.block_2 = ResnetBlock(
|
| 402 |
+
in_channels=block_in,
|
| 403 |
+
out_channels=block_in,
|
| 404 |
+
temb_channels=self.temb_ch,
|
| 405 |
+
dropout=dropout,
|
| 406 |
+
zq_ch=zq_ch,
|
| 407 |
+
add_conv=add_conv,
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# upsampling
|
| 411 |
+
self.up = nn.ModuleList()
|
| 412 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 413 |
+
block = nn.ModuleList()
|
| 414 |
+
attn = nn.ModuleList()
|
| 415 |
+
block_out = ch * ch_mult[i_level]
|
| 416 |
+
for _ in range(self.num_res_blocks + 1):
|
| 417 |
+
block.append(
|
| 418 |
+
ResnetBlock(
|
| 419 |
+
in_channels=block_in,
|
| 420 |
+
out_channels=block_out,
|
| 421 |
+
temb_channels=self.temb_ch,
|
| 422 |
+
dropout=dropout,
|
| 423 |
+
zq_ch=zq_ch,
|
| 424 |
+
add_conv=add_conv,
|
| 425 |
+
)
|
| 426 |
+
)
|
| 427 |
+
block_in = block_out
|
| 428 |
+
if curr_res in attn_resolutions:
|
| 429 |
+
attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv))
|
| 430 |
+
up = nn.Module()
|
| 431 |
+
up.block = block
|
| 432 |
+
up.attn = attn
|
| 433 |
+
if i_level != 0:
|
| 434 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 435 |
+
curr_res = curr_res * 2
|
| 436 |
+
self.up.insert(0, up)
|
| 437 |
+
|
| 438 |
+
# end
|
| 439 |
+
self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv)
|
| 440 |
+
self.conv_out = torch.nn.Conv2d(
|
| 441 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
def forward(self, z, zq):
|
| 445 |
+
self.last_z_shape = z.shape
|
| 446 |
+
temb = None
|
| 447 |
+
|
| 448 |
+
h = self.conv_in(z)
|
| 449 |
+
|
| 450 |
+
# middle
|
| 451 |
+
h = self.mid.block_1(h, temb, zq)
|
| 452 |
+
h = self.mid.attn_1(h, zq)
|
| 453 |
+
h = self.mid.block_2(h, temb, zq)
|
| 454 |
+
|
| 455 |
+
# upsampling
|
| 456 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 457 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 458 |
+
h = self.up[i_level].block[i_block](h, temb, zq)
|
| 459 |
+
if len(self.up[i_level].attn) > 0:
|
| 460 |
+
h = self.up[i_level].attn[i_block](h, zq)
|
| 461 |
+
if i_level != 0:
|
| 462 |
+
h = self.up[i_level].upsample(h)
|
| 463 |
+
|
| 464 |
+
# end
|
| 465 |
+
if self.give_pre_end:
|
| 466 |
+
return h
|
| 467 |
+
|
| 468 |
+
h = self.norm_out(h, zq)
|
| 469 |
+
h = nonlinearity(h)
|
| 470 |
+
h = self.conv_out(h)
|
| 471 |
+
return h
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
# Modified from MoVQ in https://github.com/ai-forever/Kandinsky-3/blob/main/kandinsky3/movq.py
|
| 475 |
+
class MoVQ(nn.Module):
|
| 476 |
+
def __init__(self, generator_params: dict):
|
| 477 |
+
super().__init__()
|
| 478 |
+
z_channels = generator_params["z_channels"]
|
| 479 |
+
self.config = SimpleNamespace(**generator_params)
|
| 480 |
+
self.encoder = Encoder(**generator_params)
|
| 481 |
+
self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
|
| 482 |
+
self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
|
| 483 |
+
self.decoder = Decoder(zq_ch=z_channels, **generator_params)
|
| 484 |
+
self.dtype = None
|
| 485 |
+
self.device = None
|
| 486 |
+
|
| 487 |
+
@staticmethod
|
| 488 |
+
def get_model_config(pretrained_model_name_or_path, subfolder):
|
| 489 |
+
config_path = os.path.join(
|
| 490 |
+
pretrained_model_name_or_path, subfolder, "config.json"
|
| 491 |
+
)
|
| 492 |
+
assert os.path.exists(config_path), "config file not exists."
|
| 493 |
+
with open(config_path, "r") as f:
|
| 494 |
+
config = json.loads(f.read())
|
| 495 |
+
return config
|
| 496 |
+
|
| 497 |
+
@classmethod
|
| 498 |
+
def from_pretrained(
|
| 499 |
+
cls,
|
| 500 |
+
pretrained_model_name_or_path,
|
| 501 |
+
subfolder="",
|
| 502 |
+
torch_dtype=torch.float32,
|
| 503 |
+
):
|
| 504 |
+
config = cls.get_model_config(pretrained_model_name_or_path, subfolder)
|
| 505 |
+
model = cls(generator_params=config)
|
| 506 |
+
ckpt_path = os.path.join(
|
| 507 |
+
pretrained_model_name_or_path, subfolder, "movq_model.safetensors"
|
| 508 |
+
)
|
| 509 |
+
assert os.path.exists(
|
| 510 |
+
ckpt_path
|
| 511 |
+
), f"ckpt path not exists, please check {ckpt_path}"
|
| 512 |
+
assert torch_dtype != torch.float16, "torch_dtype doesn't support fp16"
|
| 513 |
+
ckpt_weight = load_file(ckpt_path)
|
| 514 |
+
model.load_state_dict(ckpt_weight, strict=True)
|
| 515 |
+
model.to(dtype=torch_dtype)
|
| 516 |
+
return model
|
| 517 |
+
|
| 518 |
+
def to(self, *args, **kwargs):
|
| 519 |
+
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
|
| 520 |
+
*args, **kwargs
|
| 521 |
+
)
|
| 522 |
+
super(MoVQ, self).to(*args, **kwargs)
|
| 523 |
+
self.dtype = dtype if dtype is not None else self.dtype
|
| 524 |
+
self.device = device if device is not None else self.device
|
| 525 |
+
return self
|
| 526 |
+
|
| 527 |
+
@torch.no_grad()
|
| 528 |
+
@apply_forward_hook
|
| 529 |
+
def encode(self, x):
|
| 530 |
+
h = self.encoder(x)
|
| 531 |
+
h = self.quant_conv(h)
|
| 532 |
+
return h
|
| 533 |
+
|
| 534 |
+
@torch.no_grad()
|
| 535 |
+
@apply_forward_hook
|
| 536 |
+
def decode(self, quant):
|
| 537 |
+
decoder_input = self.post_quant_conv(quant)
|
| 538 |
+
decoded = self.decoder(decoder_input, quant)
|
| 539 |
+
return decoded
|