update Sequence Length
Browse files
README.md
CHANGED
|
@@ -18,17 +18,17 @@ model-index:
|
|
| 18 |
revision: b44c3b011063adb25877c13823db83bb193913c4
|
| 19 |
metrics:
|
| 20 |
- type: cos_sim_pearson
|
| 21 |
-
value: 54.
|
| 22 |
- type: cos_sim_spearman
|
| 23 |
-
value: 58.
|
| 24 |
- type: euclidean_pearson
|
| 25 |
-
value: 57.
|
| 26 |
- type: euclidean_spearman
|
| 27 |
-
value: 58.
|
| 28 |
- type: manhattan_pearson
|
| 29 |
-
value: 57.
|
| 30 |
- type: manhattan_spearman
|
| 31 |
-
value: 58.
|
| 32 |
- task:
|
| 33 |
type: STS
|
| 34 |
dataset:
|
|
@@ -39,17 +39,17 @@ model-index:
|
|
| 39 |
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
| 40 |
metrics:
|
| 41 |
- type: cos_sim_pearson
|
| 42 |
-
value: 53.
|
| 43 |
- type: cos_sim_spearman
|
| 44 |
-
value: 57.
|
| 45 |
- type: euclidean_pearson
|
| 46 |
-
value: 61.
|
| 47 |
- type: euclidean_spearman
|
| 48 |
-
value: 57.
|
| 49 |
- type: manhattan_pearson
|
| 50 |
-
value: 61.
|
| 51 |
- type: manhattan_spearman
|
| 52 |
-
value: 57.
|
| 53 |
- task:
|
| 54 |
type: Classification
|
| 55 |
dataset:
|
|
@@ -60,9 +60,9 @@ model-index:
|
|
| 60 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 61 |
metrics:
|
| 62 |
- type: accuracy
|
| 63 |
-
value: 48.
|
| 64 |
- type: f1
|
| 65 |
-
value: 46.
|
| 66 |
- task:
|
| 67 |
type: STS
|
| 68 |
dataset:
|
|
@@ -73,17 +73,17 @@ model-index:
|
|
| 73 |
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
| 74 |
metrics:
|
| 75 |
- type: cos_sim_pearson
|
| 76 |
-
value: 68.
|
| 77 |
- type: cos_sim_spearman
|
| 78 |
-
value: 70.
|
| 79 |
- type: euclidean_pearson
|
| 80 |
-
value: 69.
|
| 81 |
- type: euclidean_spearman
|
| 82 |
-
value: 70.
|
| 83 |
- type: manhattan_pearson
|
| 84 |
-
value: 69.
|
| 85 |
- type: manhattan_spearman
|
| 86 |
-
value: 70.
|
| 87 |
- task:
|
| 88 |
type: Clustering
|
| 89 |
dataset:
|
|
@@ -94,7 +94,7 @@ model-index:
|
|
| 94 |
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
| 95 |
metrics:
|
| 96 |
- type: v_measure
|
| 97 |
-
value:
|
| 98 |
- task:
|
| 99 |
type: Clustering
|
| 100 |
dataset:
|
|
@@ -105,7 +105,7 @@ model-index:
|
|
| 105 |
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
| 106 |
metrics:
|
| 107 |
- type: v_measure
|
| 108 |
-
value: 44.
|
| 109 |
- task:
|
| 110 |
type: Reranking
|
| 111 |
dataset:
|
|
@@ -116,9 +116,9 @@ model-index:
|
|
| 116 |
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
| 117 |
metrics:
|
| 118 |
- type: map
|
| 119 |
-
value: 88.
|
| 120 |
- type: mrr
|
| 121 |
-
value: 90.
|
| 122 |
- task:
|
| 123 |
type: Reranking
|
| 124 |
dataset:
|
|
@@ -129,9 +129,9 @@ model-index:
|
|
| 129 |
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
| 130 |
metrics:
|
| 131 |
- type: map
|
| 132 |
-
value: 88.
|
| 133 |
- type: mrr
|
| 134 |
-
value:
|
| 135 |
- task:
|
| 136 |
type: Retrieval
|
| 137 |
dataset:
|
|
@@ -142,65 +142,65 @@ model-index:
|
|
| 142 |
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
| 143 |
metrics:
|
| 144 |
- type: map_at_1
|
| 145 |
-
value: 26.
|
| 146 |
- type: map_at_10
|
| 147 |
-
value: 39.
|
| 148 |
- type: map_at_100
|
| 149 |
-
value: 41.
|
| 150 |
- type: map_at_1000
|
| 151 |
-
value:
|
| 152 |
- type: map_at_3
|
| 153 |
-
value: 35.
|
| 154 |
- type: map_at_5
|
| 155 |
-
value: 38.
|
| 156 |
- type: mrr_at_1
|
| 157 |
-
value: 40.
|
| 158 |
- type: mrr_at_10
|
| 159 |
-
value: 48.
|
| 160 |
- type: mrr_at_100
|
| 161 |
-
value: 49.
|
| 162 |
- type: mrr_at_1000
|
| 163 |
-
value: 49.
|
| 164 |
- type: mrr_at_3
|
| 165 |
-
value: 46.
|
| 166 |
- type: mrr_at_5
|
| 167 |
-
value: 47.
|
| 168 |
- type: ndcg_at_1
|
| 169 |
-
value: 40.
|
| 170 |
- type: ndcg_at_10
|
| 171 |
-
value: 46.
|
| 172 |
- type: ndcg_at_100
|
| 173 |
-
value: 53.
|
| 174 |
- type: ndcg_at_1000
|
| 175 |
-
value: 55.
|
| 176 |
- type: ndcg_at_3
|
| 177 |
-
value:
|
| 178 |
- type: ndcg_at_5
|
| 179 |
-
value: 43.
|
| 180 |
- type: precision_at_1
|
| 181 |
-
value: 40.
|
| 182 |
- type: precision_at_10
|
| 183 |
-
value: 10.
|
| 184 |
- type: precision_at_100
|
| 185 |
value: 1.625
|
| 186 |
- type: precision_at_1000
|
| 187 |
value: 0.184
|
| 188 |
- type: precision_at_3
|
| 189 |
-
value: 23.
|
| 190 |
- type: precision_at_5
|
| 191 |
-
value: 17.
|
| 192 |
- type: recall_at_1
|
| 193 |
-
value: 26.
|
| 194 |
- type: recall_at_10
|
| 195 |
-
value: 57.
|
| 196 |
- type: recall_at_100
|
| 197 |
-
value: 87.
|
| 198 |
- type: recall_at_1000
|
| 199 |
-
value: 98.
|
| 200 |
- type: recall_at_3
|
| 201 |
-
value: 40.
|
| 202 |
- type: recall_at_5
|
| 203 |
-
value: 48.
|
| 204 |
- task:
|
| 205 |
type: PairClassification
|
| 206 |
dataset:
|
|
@@ -211,51 +211,51 @@ model-index:
|
|
| 211 |
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
| 212 |
metrics:
|
| 213 |
- type: cos_sim_accuracy
|
| 214 |
-
value: 83.
|
| 215 |
- type: cos_sim_ap
|
| 216 |
-
value: 90.
|
| 217 |
- type: cos_sim_f1
|
| 218 |
-
value: 84.
|
| 219 |
- type: cos_sim_precision
|
| 220 |
-
value:
|
| 221 |
- type: cos_sim_recall
|
| 222 |
-
value:
|
| 223 |
- type: dot_accuracy
|
| 224 |
-
value: 83.
|
| 225 |
- type: dot_ap
|
| 226 |
-
value: 90.
|
| 227 |
- type: dot_f1
|
| 228 |
-
value: 84.
|
| 229 |
- type: dot_precision
|
| 230 |
-
value: 80.
|
| 231 |
- type: dot_recall
|
| 232 |
-
value: 88.
|
| 233 |
- type: euclidean_accuracy
|
| 234 |
value: 83.43956704750451
|
| 235 |
- type: euclidean_ap
|
| 236 |
-
value: 90.
|
| 237 |
- type: euclidean_f1
|
| 238 |
-
value: 84.
|
| 239 |
- type: euclidean_precision
|
| 240 |
-
value:
|
| 241 |
- type: euclidean_recall
|
| 242 |
-
value:
|
| 243 |
- type: manhattan_accuracy
|
| 244 |
value: 83.55983162958509
|
| 245 |
- type: manhattan_ap
|
| 246 |
-
value: 90.
|
| 247 |
- type: manhattan_f1
|
| 248 |
-
value: 84.
|
| 249 |
- type: manhattan_precision
|
| 250 |
-
value: 82.
|
| 251 |
- type: manhattan_recall
|
| 252 |
-
value: 86.
|
| 253 |
- type: max_accuracy
|
| 254 |
value: 83.55983162958509
|
| 255 |
- type: max_ap
|
| 256 |
-
value: 90.
|
| 257 |
- type: max_f1
|
| 258 |
-
value: 84.
|
| 259 |
- task:
|
| 260 |
type: Retrieval
|
| 261 |
dataset:
|
|
@@ -266,65 +266,65 @@ model-index:
|
|
| 266 |
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
| 267 |
metrics:
|
| 268 |
- type: map_at_1
|
| 269 |
-
value:
|
| 270 |
- type: map_at_10
|
| 271 |
-
value:
|
| 272 |
- type: map_at_100
|
| 273 |
-
value:
|
| 274 |
- type: map_at_1000
|
| 275 |
-
value:
|
| 276 |
- type: map_at_3
|
| 277 |
-
value:
|
| 278 |
- type: map_at_5
|
| 279 |
-
value:
|
| 280 |
- type: mrr_at_1
|
| 281 |
-
value:
|
| 282 |
- type: mrr_at_10
|
| 283 |
-
value:
|
| 284 |
- type: mrr_at_100
|
| 285 |
-
value:
|
| 286 |
- type: mrr_at_1000
|
| 287 |
-
value:
|
| 288 |
- type: mrr_at_3
|
| 289 |
-
value:
|
| 290 |
- type: mrr_at_5
|
| 291 |
-
value:
|
| 292 |
- type: ndcg_at_1
|
| 293 |
-
value:
|
| 294 |
- type: ndcg_at_10
|
| 295 |
-
value:
|
| 296 |
- type: ndcg_at_100
|
| 297 |
-
value:
|
| 298 |
- type: ndcg_at_1000
|
| 299 |
-
value: 82.
|
| 300 |
- type: ndcg_at_3
|
| 301 |
-
value:
|
| 302 |
- type: ndcg_at_5
|
| 303 |
-
value:
|
| 304 |
- type: precision_at_1
|
| 305 |
-
value:
|
| 306 |
- type: precision_at_10
|
| 307 |
-
value: 9.
|
| 308 |
- type: precision_at_100
|
| 309 |
value: 1.001
|
| 310 |
- type: precision_at_1000
|
| 311 |
value: 0.101
|
| 312 |
- type: precision_at_3
|
| 313 |
-
value:
|
| 314 |
- type: precision_at_5
|
| 315 |
-
value:
|
| 316 |
- type: recall_at_1
|
| 317 |
-
value:
|
| 318 |
- type: recall_at_10
|
| 319 |
-
value:
|
| 320 |
- type: recall_at_100
|
| 321 |
value: 99.05199999999999
|
| 322 |
- type: recall_at_1000
|
| 323 |
value: 99.895
|
| 324 |
- type: recall_at_3
|
| 325 |
-
value:
|
| 326 |
- type: recall_at_5
|
| 327 |
-
value:
|
| 328 |
- task:
|
| 329 |
type: Retrieval
|
| 330 |
dataset:
|
|
@@ -335,65 +335,65 @@ model-index:
|
|
| 335 |
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
| 336 |
metrics:
|
| 337 |
- type: map_at_1
|
| 338 |
-
value: 25.
|
| 339 |
- type: map_at_10
|
| 340 |
-
value:
|
| 341 |
- type: map_at_100
|
| 342 |
-
value: 81.
|
| 343 |
- type: map_at_1000
|
| 344 |
-
value: 81.
|
| 345 |
- type: map_at_3
|
| 346 |
-
value: 54.
|
| 347 |
- type: map_at_5
|
| 348 |
-
value:
|
| 349 |
- type: mrr_at_1
|
| 350 |
-
value: 89.
|
| 351 |
- type: mrr_at_10
|
| 352 |
-
value: 92.
|
| 353 |
- type: mrr_at_100
|
| 354 |
-
value: 92.
|
| 355 |
- type: mrr_at_1000
|
| 356 |
-
value: 92.
|
| 357 |
- type: mrr_at_3
|
| 358 |
-
value: 92.
|
| 359 |
- type: mrr_at_5
|
| 360 |
-
value: 92.
|
| 361 |
- type: ndcg_at_1
|
| 362 |
-
value: 89.
|
| 363 |
- type: ndcg_at_10
|
| 364 |
-
value: 86.
|
| 365 |
- type: ndcg_at_100
|
| 366 |
-
value: 89.
|
| 367 |
- type: ndcg_at_1000
|
| 368 |
-
value: 89.
|
| 369 |
- type: ndcg_at_3
|
| 370 |
-
value:
|
| 371 |
- type: ndcg_at_5
|
| 372 |
-
value: 84.
|
| 373 |
- type: precision_at_1
|
| 374 |
-
value: 89.
|
| 375 |
- type: precision_at_10
|
| 376 |
-
value: 41.
|
| 377 |
- type: precision_at_100
|
| 378 |
-
value: 4.
|
| 379 |
- type: precision_at_1000
|
| 380 |
value: 0.488
|
| 381 |
- type: precision_at_3
|
| 382 |
-
value: 76.
|
| 383 |
- type: precision_at_5
|
| 384 |
-
value:
|
| 385 |
- type: recall_at_1
|
| 386 |
-
value: 25.
|
| 387 |
- type: recall_at_10
|
| 388 |
-
value: 87.
|
| 389 |
- type: recall_at_100
|
| 390 |
-
value: 96.
|
| 391 |
- type: recall_at_1000
|
| 392 |
-
value: 99.
|
| 393 |
- type: recall_at_3
|
| 394 |
-
value: 56.
|
| 395 |
- type: recall_at_5
|
| 396 |
-
value:
|
| 397 |
- task:
|
| 398 |
type: Retrieval
|
| 399 |
dataset:
|
|
@@ -404,63 +404,63 @@ model-index:
|
|
| 404 |
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
| 405 |
metrics:
|
| 406 |
- type: map_at_1
|
| 407 |
-
value: 52.
|
| 408 |
- type: map_at_10
|
| 409 |
-
value: 62.
|
| 410 |
- type: map_at_100
|
| 411 |
-
value: 63.
|
| 412 |
- type: map_at_1000
|
| 413 |
-
value: 63.
|
| 414 |
- type: map_at_3
|
| 415 |
-
value: 60.
|
| 416 |
- type: map_at_5
|
| 417 |
-
value: 61.
|
| 418 |
- type: mrr_at_1
|
| 419 |
-
value: 52.
|
| 420 |
- type: mrr_at_10
|
| 421 |
-
value: 62.
|
| 422 |
- type: mrr_at_100
|
| 423 |
-
value: 63.
|
| 424 |
- type: mrr_at_1000
|
| 425 |
-
value: 63.
|
| 426 |
- type: mrr_at_3
|
| 427 |
-
value: 60.
|
| 428 |
- type: mrr_at_5
|
| 429 |
-
value: 61.
|
| 430 |
- type: ndcg_at_1
|
| 431 |
-
value: 52.
|
| 432 |
- type: ndcg_at_10
|
| 433 |
-
value: 67.
|
| 434 |
- type: ndcg_at_100
|
| 435 |
-
value: 69.
|
| 436 |
- type: ndcg_at_1000
|
| 437 |
-
value: 70.
|
| 438 |
- type: ndcg_at_3
|
| 439 |
value: 62.82600000000001
|
| 440 |
- type: ndcg_at_5
|
| 441 |
-
value: 65.
|
| 442 |
- type: precision_at_1
|
| 443 |
-
value: 52.
|
| 444 |
- type: precision_at_10
|
| 445 |
-
value: 8.
|
| 446 |
- type: precision_at_100
|
| 447 |
value: 0.941
|
| 448 |
- type: precision_at_1000
|
| 449 |
value: 0.097
|
| 450 |
- type: precision_at_3
|
| 451 |
-
value: 23.
|
| 452 |
- type: precision_at_5
|
| 453 |
value: 15.36
|
| 454 |
- type: recall_at_1
|
| 455 |
-
value: 52.
|
| 456 |
- type: recall_at_10
|
| 457 |
-
value: 83.
|
| 458 |
- type: recall_at_100
|
| 459 |
value: 94.1
|
| 460 |
- type: recall_at_1000
|
| 461 |
value: 97.0
|
| 462 |
- type: recall_at_3
|
| 463 |
-
value: 70.
|
| 464 |
- type: recall_at_5
|
| 465 |
value: 76.8
|
| 466 |
- task:
|
|
@@ -473,9 +473,9 @@ model-index:
|
|
| 473 |
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
| 474 |
metrics:
|
| 475 |
- type: accuracy
|
| 476 |
-
value: 51.
|
| 477 |
- type: f1
|
| 478 |
-
value: 40.
|
| 479 |
- task:
|
| 480 |
type: Classification
|
| 481 |
dataset:
|
|
@@ -501,17 +501,17 @@ model-index:
|
|
| 501 |
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
| 502 |
metrics:
|
| 503 |
- type: cos_sim_pearson
|
| 504 |
-
value: 71.
|
| 505 |
- type: cos_sim_spearman
|
| 506 |
-
value: 78.
|
| 507 |
- type: euclidean_pearson
|
| 508 |
-
value: 77.
|
| 509 |
- type: euclidean_spearman
|
| 510 |
-
value: 78.
|
| 511 |
- type: manhattan_pearson
|
| 512 |
-
value: 77.
|
| 513 |
- type: manhattan_spearman
|
| 514 |
-
value: 78.
|
| 515 |
- task:
|
| 516 |
type: Reranking
|
| 517 |
dataset:
|
|
@@ -522,9 +522,9 @@ model-index:
|
|
| 522 |
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
|
| 523 |
metrics:
|
| 524 |
- type: map
|
| 525 |
-
value: 27.
|
| 526 |
- type: mrr
|
| 527 |
-
value:
|
| 528 |
- task:
|
| 529 |
type: Retrieval
|
| 530 |
dataset:
|
|
@@ -535,65 +535,65 @@ model-index:
|
|
| 535 |
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
| 536 |
metrics:
|
| 537 |
- type: map_at_1
|
| 538 |
-
value: 65.
|
| 539 |
- type: map_at_10
|
| 540 |
-
value: 74.
|
| 541 |
- type: map_at_100
|
| 542 |
value: 75.091
|
| 543 |
- type: map_at_1000
|
| 544 |
-
value: 75.
|
| 545 |
- type: map_at_3
|
| 546 |
-
value:
|
| 547 |
- type: map_at_5
|
| 548 |
-
value: 74.
|
| 549 |
- type: mrr_at_1
|
| 550 |
-
value: 67.
|
| 551 |
- type: mrr_at_10
|
| 552 |
-
value: 75.
|
| 553 |
- type: mrr_at_100
|
| 554 |
-
value: 75.
|
| 555 |
- type: mrr_at_1000
|
| 556 |
value: 75.685
|
| 557 |
- type: mrr_at_3
|
| 558 |
-
value: 73.
|
| 559 |
- type: mrr_at_5
|
| 560 |
-
value: 74.
|
| 561 |
- type: ndcg_at_1
|
| 562 |
-
value: 67.
|
| 563 |
- type: ndcg_at_10
|
| 564 |
-
value: 78.
|
| 565 |
- type: ndcg_at_100
|
| 566 |
-
value: 79.
|
| 567 |
- type: ndcg_at_1000
|
| 568 |
value: 80.265
|
| 569 |
- type: ndcg_at_3
|
| 570 |
-
value: 75.
|
| 571 |
- type: ndcg_at_5
|
| 572 |
-
value: 76.
|
| 573 |
- type: precision_at_1
|
| 574 |
-
value: 67.
|
| 575 |
- type: precision_at_10
|
| 576 |
-
value: 9.
|
| 577 |
- type: precision_at_100
|
| 578 |
value: 1.023
|
| 579 |
- type: precision_at_1000
|
| 580 |
value: 0.105
|
| 581 |
- type: precision_at_3
|
| 582 |
-
value: 28.
|
| 583 |
- type: precision_at_5
|
| 584 |
-
value: 17.
|
| 585 |
- type: recall_at_1
|
| 586 |
-
value: 65.
|
| 587 |
- type: recall_at_10
|
| 588 |
-
value: 89.
|
| 589 |
- type: recall_at_100
|
| 590 |
-
value:
|
| 591 |
- type: recall_at_1000
|
| 592 |
value: 98.455
|
| 593 |
- type: recall_at_3
|
| 594 |
-
value: 80.
|
| 595 |
- type: recall_at_5
|
| 596 |
-
value: 84.
|
| 597 |
- task:
|
| 598 |
type: Classification
|
| 599 |
dataset:
|
|
@@ -604,9 +604,9 @@ model-index:
|
|
| 604 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 605 |
metrics:
|
| 606 |
- type: accuracy
|
| 607 |
-
value: 75.
|
| 608 |
- type: f1
|
| 609 |
-
value: 73.
|
| 610 |
- task:
|
| 611 |
type: Classification
|
| 612 |
dataset:
|
|
@@ -617,9 +617,9 @@ model-index:
|
|
| 617 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 618 |
metrics:
|
| 619 |
- type: accuracy
|
| 620 |
-
value: 78.
|
| 621 |
- type: f1
|
| 622 |
-
value: 78.
|
| 623 |
- task:
|
| 624 |
type: Retrieval
|
| 625 |
dataset:
|
|
@@ -630,65 +630,65 @@ model-index:
|
|
| 630 |
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
| 631 |
metrics:
|
| 632 |
- type: map_at_1
|
| 633 |
-
value:
|
| 634 |
- type: map_at_10
|
| 635 |
-
value: 61.
|
| 636 |
- type: map_at_100
|
| 637 |
-
value: 61.
|
| 638 |
- type: map_at_1000
|
| 639 |
-
value: 61.
|
| 640 |
- type: map_at_3
|
| 641 |
-
value: 59.
|
| 642 |
- type: map_at_5
|
| 643 |
-
value: 60.
|
| 644 |
- type: mrr_at_1
|
| 645 |
-
value: 55.
|
| 646 |
- type: mrr_at_10
|
| 647 |
-
value: 61.
|
| 648 |
- type: mrr_at_100
|
| 649 |
-
value: 61.
|
| 650 |
- type: mrr_at_1000
|
| 651 |
-
value: 61.
|
| 652 |
- type: mrr_at_3
|
| 653 |
-
value: 59.
|
| 654 |
- type: mrr_at_5
|
| 655 |
-
value: 60.
|
| 656 |
- type: ndcg_at_1
|
| 657 |
-
value:
|
| 658 |
- type: ndcg_at_10
|
| 659 |
-
value: 64.
|
| 660 |
- type: ndcg_at_100
|
| 661 |
-
value:
|
| 662 |
- type: ndcg_at_1000
|
| 663 |
-
value: 68.
|
| 664 |
- type: ndcg_at_3
|
| 665 |
-
value:
|
| 666 |
- type: ndcg_at_5
|
| 667 |
-
value: 62.
|
| 668 |
- type: precision_at_1
|
| 669 |
-
value:
|
| 670 |
- type: precision_at_10
|
| 671 |
-
value: 7.
|
| 672 |
- type: precision_at_100
|
| 673 |
-
value: 0.
|
| 674 |
- type: precision_at_1000
|
| 675 |
value: 0.098
|
| 676 |
- type: precision_at_3
|
| 677 |
value: 21.7
|
| 678 |
- type: precision_at_5
|
| 679 |
-
value: 13.
|
| 680 |
- type: recall_at_1
|
| 681 |
-
value:
|
| 682 |
- type: recall_at_10
|
| 683 |
-
value: 73.
|
| 684 |
- type: recall_at_100
|
| 685 |
-
value: 88.
|
| 686 |
- type: recall_at_1000
|
| 687 |
value: 97.8
|
| 688 |
- type: recall_at_3
|
| 689 |
value: 65.10000000000001
|
| 690 |
- type: recall_at_5
|
| 691 |
-
value: 68.
|
| 692 |
- task:
|
| 693 |
type: Classification
|
| 694 |
dataset:
|
|
@@ -699,9 +699,9 @@ model-index:
|
|
| 699 |
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
| 700 |
metrics:
|
| 701 |
- type: accuracy
|
| 702 |
-
value: 77.
|
| 703 |
- type: f1
|
| 704 |
-
value: 77.
|
| 705 |
- task:
|
| 706 |
type: PairClassification
|
| 707 |
dataset:
|
|
@@ -714,49 +714,49 @@ model-index:
|
|
| 714 |
- type: cos_sim_accuracy
|
| 715 |
value: 81.10449377368705
|
| 716 |
- type: cos_sim_ap
|
| 717 |
-
value: 85.
|
| 718 |
- type: cos_sim_f1
|
| 719 |
-
value:
|
| 720 |
- type: cos_sim_precision
|
| 721 |
-
value: 75.
|
| 722 |
- type: cos_sim_recall
|
| 723 |
-
value: 92.
|
| 724 |
- type: dot_accuracy
|
| 725 |
-
value: 81.
|
| 726 |
- type: dot_ap
|
| 727 |
-
value: 85.
|
| 728 |
- type: dot_f1
|
| 729 |
-
value: 83.
|
| 730 |
- type: dot_precision
|
| 731 |
-
value: 75.
|
| 732 |
- type: dot_recall
|
| 733 |
-
value: 92.
|
| 734 |
- type: euclidean_accuracy
|
| 735 |
value: 81.10449377368705
|
| 736 |
- type: euclidean_ap
|
| 737 |
-
value: 85.
|
| 738 |
- type: euclidean_f1
|
| 739 |
-
value:
|
| 740 |
- type: euclidean_precision
|
| 741 |
-
value: 75.
|
| 742 |
- type: euclidean_recall
|
| 743 |
-
value: 92.
|
| 744 |
- type: manhattan_accuracy
|
| 745 |
-
value: 81.
|
| 746 |
- type: manhattan_ap
|
| 747 |
-
value: 85.
|
| 748 |
- type: manhattan_f1
|
| 749 |
-
value: 82.
|
| 750 |
- type: manhattan_precision
|
| 751 |
-
value: 75.
|
| 752 |
- type: manhattan_recall
|
| 753 |
-
value:
|
| 754 |
- type: max_accuracy
|
| 755 |
-
value: 81.
|
| 756 |
- type: max_ap
|
| 757 |
-
value: 85.
|
| 758 |
- type: max_f1
|
| 759 |
-
value: 83.
|
| 760 |
- task:
|
| 761 |
type: Classification
|
| 762 |
dataset:
|
|
@@ -767,11 +767,11 @@ model-index:
|
|
| 767 |
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
| 768 |
metrics:
|
| 769 |
- type: accuracy
|
| 770 |
-
value: 93.
|
| 771 |
- type: ap
|
| 772 |
-
value: 91.
|
| 773 |
- type: f1
|
| 774 |
-
value: 93.
|
| 775 |
- task:
|
| 776 |
type: STS
|
| 777 |
dataset:
|
|
@@ -782,17 +782,17 @@ model-index:
|
|
| 782 |
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
| 783 |
metrics:
|
| 784 |
- type: cos_sim_pearson
|
| 785 |
-
value: 39.
|
| 786 |
- type: cos_sim_spearman
|
| 787 |
-
value: 45.
|
| 788 |
- type: euclidean_pearson
|
| 789 |
-
value: 44.
|
| 790 |
- type: euclidean_spearman
|
| 791 |
-
value: 45.
|
| 792 |
- type: manhattan_pearson
|
| 793 |
-
value: 44.
|
| 794 |
- type: manhattan_spearman
|
| 795 |
-
value: 45.
|
| 796 |
- task:
|
| 797 |
type: STS
|
| 798 |
dataset:
|
|
@@ -803,17 +803,17 @@ model-index:
|
|
| 803 |
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
| 804 |
metrics:
|
| 805 |
- type: cos_sim_pearson
|
| 806 |
-
value: 34.
|
| 807 |
- type: cos_sim_spearman
|
| 808 |
-
value: 37.
|
| 809 |
- type: euclidean_pearson
|
| 810 |
-
value: 35.
|
| 811 |
- type: euclidean_spearman
|
| 812 |
-
value: 37.
|
| 813 |
- type: manhattan_pearson
|
| 814 |
-
value: 35.
|
| 815 |
- type: manhattan_spearman
|
| 816 |
-
value: 37.
|
| 817 |
- task:
|
| 818 |
type: STS
|
| 819 |
dataset:
|
|
@@ -824,17 +824,17 @@ model-index:
|
|
| 824 |
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
| 825 |
metrics:
|
| 826 |
- type: cos_sim_pearson
|
| 827 |
-
value: 61.
|
| 828 |
- type: cos_sim_spearman
|
| 829 |
-
value:
|
| 830 |
- type: euclidean_pearson
|
| 831 |
-
value:
|
| 832 |
- type: euclidean_spearman
|
| 833 |
-
value:
|
| 834 |
- type: manhattan_pearson
|
| 835 |
-
value:
|
| 836 |
- type: manhattan_spearman
|
| 837 |
-
value:
|
| 838 |
- task:
|
| 839 |
type: STS
|
| 840 |
dataset:
|
|
@@ -845,17 +845,17 @@ model-index:
|
|
| 845 |
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
| 846 |
metrics:
|
| 847 |
- type: cos_sim_pearson
|
| 848 |
-
value: 81.
|
| 849 |
- type: cos_sim_spearman
|
| 850 |
-
value: 82.
|
| 851 |
- type: euclidean_pearson
|
| 852 |
-
value: 82.
|
| 853 |
- type: euclidean_spearman
|
| 854 |
-
value: 82.
|
| 855 |
- type: manhattan_pearson
|
| 856 |
-
value: 82.
|
| 857 |
- type: manhattan_spearman
|
| 858 |
-
value: 82.
|
| 859 |
- task:
|
| 860 |
type: Reranking
|
| 861 |
dataset:
|
|
@@ -866,9 +866,9 @@ model-index:
|
|
| 866 |
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
| 867 |
metrics:
|
| 868 |
- type: map
|
| 869 |
-
value:
|
| 870 |
- type: mrr
|
| 871 |
-
value:
|
| 872 |
- task:
|
| 873 |
type: Retrieval
|
| 874 |
dataset:
|
|
@@ -879,65 +879,65 @@ model-index:
|
|
| 879 |
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
| 880 |
metrics:
|
| 881 |
- type: map_at_1
|
| 882 |
-
value: 27.
|
| 883 |
- type: map_at_10
|
| 884 |
-
value:
|
| 885 |
- type: map_at_100
|
| 886 |
-
value:
|
| 887 |
- type: map_at_1000
|
| 888 |
-
value:
|
| 889 |
- type: map_at_3
|
| 890 |
-
value:
|
| 891 |
- type: map_at_5
|
| 892 |
-
value:
|
| 893 |
- type: mrr_at_1
|
| 894 |
-
value:
|
| 895 |
- type: mrr_at_10
|
| 896 |
-
value:
|
| 897 |
- type: mrr_at_100
|
| 898 |
-
value:
|
| 899 |
- type: mrr_at_1000
|
| 900 |
-
value:
|
| 901 |
- type: mrr_at_3
|
| 902 |
-
value:
|
| 903 |
- type: mrr_at_5
|
| 904 |
-
value:
|
| 905 |
- type: ndcg_at_1
|
| 906 |
-
value:
|
| 907 |
- type: ndcg_at_10
|
| 908 |
-
value:
|
| 909 |
- type: ndcg_at_100
|
| 910 |
-
value:
|
| 911 |
- type: ndcg_at_1000
|
| 912 |
-
value:
|
| 913 |
- type: ndcg_at_3
|
| 914 |
-
value:
|
| 915 |
- type: ndcg_at_5
|
| 916 |
-
value:
|
| 917 |
- type: precision_at_1
|
| 918 |
-
value:
|
| 919 |
- type: precision_at_10
|
| 920 |
-
value:
|
| 921 |
- type: precision_at_100
|
| 922 |
-
value:
|
| 923 |
- type: precision_at_1000
|
| 924 |
-
value: 0.
|
| 925 |
- type: precision_at_3
|
| 926 |
-
value:
|
| 927 |
- type: precision_at_5
|
| 928 |
-
value:
|
| 929 |
- type: recall_at_1
|
| 930 |
-
value: 27.
|
| 931 |
- type: recall_at_10
|
| 932 |
-
value:
|
| 933 |
- type: recall_at_100
|
| 934 |
-
value: 95.
|
| 935 |
- type: recall_at_1000
|
| 936 |
-
value: 98.
|
| 937 |
- type: recall_at_3
|
| 938 |
-
value:
|
| 939 |
- type: recall_at_5
|
| 940 |
-
value:
|
| 941 |
- task:
|
| 942 |
type: Classification
|
| 943 |
dataset:
|
|
@@ -948,9 +948,9 @@ model-index:
|
|
| 948 |
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
| 949 |
metrics:
|
| 950 |
- type: accuracy
|
| 951 |
-
value: 53.
|
| 952 |
- type: f1
|
| 953 |
-
value: 51.
|
| 954 |
- task:
|
| 955 |
type: Clustering
|
| 956 |
dataset:
|
|
@@ -961,7 +961,7 @@ model-index:
|
|
| 961 |
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
| 962 |
metrics:
|
| 963 |
- type: v_measure
|
| 964 |
-
value:
|
| 965 |
- task:
|
| 966 |
type: Clustering
|
| 967 |
dataset:
|
|
@@ -972,7 +972,7 @@ model-index:
|
|
| 972 |
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
| 973 |
metrics:
|
| 974 |
- type: v_measure
|
| 975 |
-
value:
|
| 976 |
- task:
|
| 977 |
type: Retrieval
|
| 978 |
dataset:
|
|
@@ -985,43 +985,43 @@ model-index:
|
|
| 985 |
- type: map_at_1
|
| 986 |
value: 59.4
|
| 987 |
- type: map_at_10
|
| 988 |
-
value: 69.
|
| 989 |
- type: map_at_100
|
| 990 |
-
value: 69.711
|
| 991 |
-
- type: map_at_1000
|
| 992 |
value: 69.72699999999999
|
|
|
|
|
|
|
| 993 |
- type: map_at_3
|
| 994 |
value: 67.717
|
| 995 |
- type: map_at_5
|
| 996 |
-
value: 68.
|
| 997 |
- type: mrr_at_1
|
| 998 |
value: 59.4
|
| 999 |
- type: mrr_at_10
|
| 1000 |
-
value: 69.
|
| 1001 |
- type: mrr_at_100
|
| 1002 |
-
value: 69.711
|
| 1003 |
-
- type: mrr_at_1000
|
| 1004 |
value: 69.72699999999999
|
|
|
|
|
|
|
| 1005 |
- type: mrr_at_3
|
| 1006 |
value: 67.717
|
| 1007 |
- type: mrr_at_5
|
| 1008 |
-
value: 68.
|
| 1009 |
- type: ndcg_at_1
|
| 1010 |
value: 59.4
|
| 1011 |
- type: ndcg_at_10
|
| 1012 |
-
value: 73.
|
| 1013 |
- type: ndcg_at_100
|
| 1014 |
-
value: 75.
|
| 1015 |
- type: ndcg_at_1000
|
| 1016 |
-
value: 75.
|
| 1017 |
- type: ndcg_at_3
|
| 1018 |
value: 70.339
|
| 1019 |
- type: ndcg_at_5
|
| 1020 |
-
value: 72.
|
| 1021 |
- type: precision_at_1
|
| 1022 |
value: 59.4
|
| 1023 |
- type: precision_at_10
|
| 1024 |
-
value: 8.
|
| 1025 |
- type: precision_at_100
|
| 1026 |
value: 0.96
|
| 1027 |
- type: precision_at_1000
|
|
@@ -1029,11 +1029,11 @@ model-index:
|
|
| 1029 |
- type: precision_at_3
|
| 1030 |
value: 25.967000000000002
|
| 1031 |
- type: precision_at_5
|
| 1032 |
-
value: 16.
|
| 1033 |
- type: recall_at_1
|
| 1034 |
value: 59.4
|
| 1035 |
- type: recall_at_10
|
| 1036 |
-
value: 85.
|
| 1037 |
- type: recall_at_100
|
| 1038 |
value: 96.0
|
| 1039 |
- type: recall_at_1000
|
|
@@ -1041,7 +1041,7 @@ model-index:
|
|
| 1041 |
- type: recall_at_3
|
| 1042 |
value: 77.9
|
| 1043 |
- type: recall_at_5
|
| 1044 |
-
value: 82.
|
| 1045 |
- task:
|
| 1046 |
type: Classification
|
| 1047 |
dataset:
|
|
@@ -1052,12 +1052,14 @@ model-index:
|
|
| 1052 |
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
| 1053 |
metrics:
|
| 1054 |
- type: accuracy
|
| 1055 |
-
value: 88.
|
| 1056 |
- type: ap
|
| 1057 |
-
value: 73.
|
| 1058 |
- type: f1
|
| 1059 |
-
value: 87.
|
| 1060 |
---
|
|
|
|
|
|
|
| 1061 |
## acge model
|
| 1062 |
|
| 1063 |
acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了[Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147),如图所示:
|
|
@@ -1077,13 +1079,16 @@ acge是一个通用的文本编码模型,是一个可变长度的向量化模
|
|
| 1077 |
#### C-MTEB leaderboard (Chinese)
|
| 1078 |
|
| 1079 |
测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。
|
|
|
|
| 1080 |
|
| 1081 |
| Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|
| 1082 |
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|:-------:|:-------:|
|
| 1083 |
-
| acge_text_embedding
|
| 1084 |
-
| acge_text_embedding
|
| 1085 |
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
|
| 1086 |
| acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
|
|
|
|
|
|
|
| 1087 |
|
| 1088 |
#### Reproduce our results
|
| 1089 |
|
|
|
|
| 18 |
revision: b44c3b011063adb25877c13823db83bb193913c4
|
| 19 |
metrics:
|
| 20 |
- type: cos_sim_pearson
|
| 21 |
+
value: 54.03434872650919
|
| 22 |
- type: cos_sim_spearman
|
| 23 |
+
value: 58.80730796688325
|
| 24 |
- type: euclidean_pearson
|
| 25 |
+
value: 57.47231387497989
|
| 26 |
- type: euclidean_spearman
|
| 27 |
+
value: 58.80775026351807
|
| 28 |
- type: manhattan_pearson
|
| 29 |
+
value: 57.46332720141574
|
| 30 |
- type: manhattan_spearman
|
| 31 |
+
value: 58.80196022940078
|
| 32 |
- task:
|
| 33 |
type: STS
|
| 34 |
dataset:
|
|
|
|
| 39 |
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
| 40 |
metrics:
|
| 41 |
- type: cos_sim_pearson
|
| 42 |
+
value: 53.52621290548175
|
| 43 |
- type: cos_sim_spearman
|
| 44 |
+
value: 57.945227768312144
|
| 45 |
- type: euclidean_pearson
|
| 46 |
+
value: 61.17041394151802
|
| 47 |
- type: euclidean_spearman
|
| 48 |
+
value: 57.94553287835657
|
| 49 |
- type: manhattan_pearson
|
| 50 |
+
value: 61.168327500057885
|
| 51 |
- type: manhattan_spearman
|
| 52 |
+
value: 57.94477516925043
|
| 53 |
- task:
|
| 54 |
type: Classification
|
| 55 |
dataset:
|
|
|
|
| 60 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 61 |
metrics:
|
| 62 |
- type: accuracy
|
| 63 |
+
value: 48.538000000000004
|
| 64 |
- type: f1
|
| 65 |
+
value: 46.59920995594044
|
| 66 |
- task:
|
| 67 |
type: STS
|
| 68 |
dataset:
|
|
|
|
| 73 |
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
| 74 |
metrics:
|
| 75 |
- type: cos_sim_pearson
|
| 76 |
+
value: 68.27529991817154
|
| 77 |
- type: cos_sim_spearman
|
| 78 |
+
value: 70.37095914176643
|
| 79 |
- type: euclidean_pearson
|
| 80 |
+
value: 69.42690712802727
|
| 81 |
- type: euclidean_spearman
|
| 82 |
+
value: 70.37017971889912
|
| 83 |
- type: manhattan_pearson
|
| 84 |
+
value: 69.40264877917839
|
| 85 |
- type: manhattan_spearman
|
| 86 |
+
value: 70.34786744049524
|
| 87 |
- task:
|
| 88 |
type: Clustering
|
| 89 |
dataset:
|
|
|
|
| 94 |
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
| 95 |
metrics:
|
| 96 |
- type: v_measure
|
| 97 |
+
value: 47.08027536192709
|
| 98 |
- task:
|
| 99 |
type: Clustering
|
| 100 |
dataset:
|
|
|
|
| 105 |
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
| 106 |
metrics:
|
| 107 |
- type: v_measure
|
| 108 |
+
value: 44.0526024940363
|
| 109 |
- task:
|
| 110 |
type: Reranking
|
| 111 |
dataset:
|
|
|
|
| 116 |
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
| 117 |
metrics:
|
| 118 |
- type: map
|
| 119 |
+
value: 88.65974993133156
|
| 120 |
- type: mrr
|
| 121 |
+
value: 90.64761904761905
|
| 122 |
- task:
|
| 123 |
type: Reranking
|
| 124 |
dataset:
|
|
|
|
| 129 |
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
| 130 |
metrics:
|
| 131 |
- type: map
|
| 132 |
+
value: 88.90396838907245
|
| 133 |
- type: mrr
|
| 134 |
+
value: 90.90932539682541
|
| 135 |
- task:
|
| 136 |
type: Retrieval
|
| 137 |
dataset:
|
|
|
|
| 142 |
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
| 143 |
metrics:
|
| 144 |
- type: map_at_1
|
| 145 |
+
value: 26.875
|
| 146 |
- type: map_at_10
|
| 147 |
+
value: 39.995999999999995
|
| 148 |
- type: map_at_100
|
| 149 |
+
value: 41.899
|
| 150 |
- type: map_at_1000
|
| 151 |
+
value: 42.0
|
| 152 |
- type: map_at_3
|
| 153 |
+
value: 35.414
|
| 154 |
- type: map_at_5
|
| 155 |
+
value: 38.019
|
| 156 |
- type: mrr_at_1
|
| 157 |
+
value: 40.635
|
| 158 |
- type: mrr_at_10
|
| 159 |
+
value: 48.827
|
| 160 |
- type: mrr_at_100
|
| 161 |
+
value: 49.805
|
| 162 |
- type: mrr_at_1000
|
| 163 |
+
value: 49.845
|
| 164 |
- type: mrr_at_3
|
| 165 |
+
value: 46.145
|
| 166 |
- type: mrr_at_5
|
| 167 |
+
value: 47.693999999999996
|
| 168 |
- type: ndcg_at_1
|
| 169 |
+
value: 40.635
|
| 170 |
- type: ndcg_at_10
|
| 171 |
+
value: 46.78
|
| 172 |
- type: ndcg_at_100
|
| 173 |
+
value: 53.986999999999995
|
| 174 |
- type: ndcg_at_1000
|
| 175 |
+
value: 55.684
|
| 176 |
- type: ndcg_at_3
|
| 177 |
+
value: 41.018
|
| 178 |
- type: ndcg_at_5
|
| 179 |
+
value: 43.559
|
| 180 |
- type: precision_at_1
|
| 181 |
+
value: 40.635
|
| 182 |
- type: precision_at_10
|
| 183 |
+
value: 10.427999999999999
|
| 184 |
- type: precision_at_100
|
| 185 |
value: 1.625
|
| 186 |
- type: precision_at_1000
|
| 187 |
value: 0.184
|
| 188 |
- type: precision_at_3
|
| 189 |
+
value: 23.139000000000003
|
| 190 |
- type: precision_at_5
|
| 191 |
+
value: 17.004
|
| 192 |
- type: recall_at_1
|
| 193 |
+
value: 26.875
|
| 194 |
- type: recall_at_10
|
| 195 |
+
value: 57.887
|
| 196 |
- type: recall_at_100
|
| 197 |
+
value: 87.408
|
| 198 |
- type: recall_at_1000
|
| 199 |
+
value: 98.721
|
| 200 |
- type: recall_at_3
|
| 201 |
+
value: 40.812
|
| 202 |
- type: recall_at_5
|
| 203 |
+
value: 48.397
|
| 204 |
- task:
|
| 205 |
type: PairClassification
|
| 206 |
dataset:
|
|
|
|
| 211 |
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
| 212 |
metrics:
|
| 213 |
- type: cos_sim_accuracy
|
| 214 |
+
value: 83.43956704750451
|
| 215 |
- type: cos_sim_ap
|
| 216 |
+
value: 90.49172854352659
|
| 217 |
- type: cos_sim_f1
|
| 218 |
+
value: 84.28475486903963
|
| 219 |
- type: cos_sim_precision
|
| 220 |
+
value: 80.84603822203135
|
| 221 |
- type: cos_sim_recall
|
| 222 |
+
value: 88.02899228431144
|
| 223 |
- type: dot_accuracy
|
| 224 |
+
value: 83.43956704750451
|
| 225 |
- type: dot_ap
|
| 226 |
+
value: 90.46317132695233
|
| 227 |
- type: dot_f1
|
| 228 |
+
value: 84.28794294628929
|
| 229 |
- type: dot_precision
|
| 230 |
+
value: 80.51948051948052
|
| 231 |
- type: dot_recall
|
| 232 |
+
value: 88.4264671498714
|
| 233 |
- type: euclidean_accuracy
|
| 234 |
value: 83.43956704750451
|
| 235 |
- type: euclidean_ap
|
| 236 |
+
value: 90.49171785256486
|
| 237 |
- type: euclidean_f1
|
| 238 |
+
value: 84.28235820561584
|
| 239 |
- type: euclidean_precision
|
| 240 |
+
value: 80.8022308022308
|
| 241 |
- type: euclidean_recall
|
| 242 |
+
value: 88.07575403320084
|
| 243 |
- type: manhattan_accuracy
|
| 244 |
value: 83.55983162958509
|
| 245 |
- type: manhattan_ap
|
| 246 |
+
value: 90.48046779812815
|
| 247 |
- type: manhattan_f1
|
| 248 |
+
value: 84.45354259069714
|
| 249 |
- type: manhattan_precision
|
| 250 |
+
value: 82.21877767936226
|
| 251 |
- type: manhattan_recall
|
| 252 |
+
value: 86.81318681318682
|
| 253 |
- type: max_accuracy
|
| 254 |
value: 83.55983162958509
|
| 255 |
- type: max_ap
|
| 256 |
+
value: 90.49172854352659
|
| 257 |
- type: max_f1
|
| 258 |
+
value: 84.45354259069714
|
| 259 |
- task:
|
| 260 |
type: Retrieval
|
| 261 |
dataset:
|
|
|
|
| 266 |
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
| 267 |
metrics:
|
| 268 |
- type: map_at_1
|
| 269 |
+
value: 68.54599999999999
|
| 270 |
- type: map_at_10
|
| 271 |
+
value: 77.62400000000001
|
| 272 |
- type: map_at_100
|
| 273 |
+
value: 77.886
|
| 274 |
- type: map_at_1000
|
| 275 |
+
value: 77.89
|
| 276 |
- type: map_at_3
|
| 277 |
+
value: 75.966
|
| 278 |
- type: map_at_5
|
| 279 |
+
value: 76.995
|
| 280 |
- type: mrr_at_1
|
| 281 |
+
value: 68.915
|
| 282 |
- type: mrr_at_10
|
| 283 |
+
value: 77.703
|
| 284 |
- type: mrr_at_100
|
| 285 |
+
value: 77.958
|
| 286 |
- type: mrr_at_1000
|
| 287 |
+
value: 77.962
|
| 288 |
- type: mrr_at_3
|
| 289 |
+
value: 76.08
|
| 290 |
- type: mrr_at_5
|
| 291 |
+
value: 77.118
|
| 292 |
- type: ndcg_at_1
|
| 293 |
+
value: 68.809
|
| 294 |
- type: ndcg_at_10
|
| 295 |
+
value: 81.563
|
| 296 |
- type: ndcg_at_100
|
| 297 |
+
value: 82.758
|
| 298 |
- type: ndcg_at_1000
|
| 299 |
+
value: 82.864
|
| 300 |
- type: ndcg_at_3
|
| 301 |
+
value: 78.29
|
| 302 |
- type: ndcg_at_5
|
| 303 |
+
value: 80.113
|
| 304 |
- type: precision_at_1
|
| 305 |
+
value: 68.809
|
| 306 |
- type: precision_at_10
|
| 307 |
+
value: 9.463000000000001
|
| 308 |
- type: precision_at_100
|
| 309 |
value: 1.001
|
| 310 |
- type: precision_at_1000
|
| 311 |
value: 0.101
|
| 312 |
- type: precision_at_3
|
| 313 |
+
value: 28.486
|
| 314 |
- type: precision_at_5
|
| 315 |
+
value: 18.019
|
| 316 |
- type: recall_at_1
|
| 317 |
+
value: 68.54599999999999
|
| 318 |
- type: recall_at_10
|
| 319 |
+
value: 93.625
|
| 320 |
- type: recall_at_100
|
| 321 |
value: 99.05199999999999
|
| 322 |
- type: recall_at_1000
|
| 323 |
value: 99.895
|
| 324 |
- type: recall_at_3
|
| 325 |
+
value: 84.879
|
| 326 |
- type: recall_at_5
|
| 327 |
+
value: 89.252
|
| 328 |
- task:
|
| 329 |
type: Retrieval
|
| 330 |
dataset:
|
|
|
|
| 335 |
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
| 336 |
metrics:
|
| 337 |
- type: map_at_1
|
| 338 |
+
value: 25.653
|
| 339 |
- type: map_at_10
|
| 340 |
+
value: 79.105
|
| 341 |
- type: map_at_100
|
| 342 |
+
value: 81.902
|
| 343 |
- type: map_at_1000
|
| 344 |
+
value: 81.947
|
| 345 |
- type: map_at_3
|
| 346 |
+
value: 54.54599999999999
|
| 347 |
- type: map_at_5
|
| 348 |
+
value: 69.226
|
| 349 |
- type: mrr_at_1
|
| 350 |
+
value: 89.35
|
| 351 |
- type: mrr_at_10
|
| 352 |
+
value: 92.69
|
| 353 |
- type: mrr_at_100
|
| 354 |
+
value: 92.77
|
| 355 |
- type: mrr_at_1000
|
| 356 |
+
value: 92.774
|
| 357 |
- type: mrr_at_3
|
| 358 |
+
value: 92.425
|
| 359 |
- type: mrr_at_5
|
| 360 |
+
value: 92.575
|
| 361 |
- type: ndcg_at_1
|
| 362 |
+
value: 89.35
|
| 363 |
- type: ndcg_at_10
|
| 364 |
+
value: 86.55199999999999
|
| 365 |
- type: ndcg_at_100
|
| 366 |
+
value: 89.35300000000001
|
| 367 |
- type: ndcg_at_1000
|
| 368 |
+
value: 89.782
|
| 369 |
- type: ndcg_at_3
|
| 370 |
+
value: 85.392
|
| 371 |
- type: ndcg_at_5
|
| 372 |
+
value: 84.5
|
| 373 |
- type: precision_at_1
|
| 374 |
+
value: 89.35
|
| 375 |
- type: precision_at_10
|
| 376 |
+
value: 41.589999999999996
|
| 377 |
- type: precision_at_100
|
| 378 |
+
value: 4.781
|
| 379 |
- type: precision_at_1000
|
| 380 |
value: 0.488
|
| 381 |
- type: precision_at_3
|
| 382 |
+
value: 76.683
|
| 383 |
- type: precision_at_5
|
| 384 |
+
value: 65.06
|
| 385 |
- type: recall_at_1
|
| 386 |
+
value: 25.653
|
| 387 |
- type: recall_at_10
|
| 388 |
+
value: 87.64999999999999
|
| 389 |
- type: recall_at_100
|
| 390 |
+
value: 96.858
|
| 391 |
- type: recall_at_1000
|
| 392 |
+
value: 99.13300000000001
|
| 393 |
- type: recall_at_3
|
| 394 |
+
value: 56.869
|
| 395 |
- type: recall_at_5
|
| 396 |
+
value: 74.024
|
| 397 |
- task:
|
| 398 |
type: Retrieval
|
| 399 |
dataset:
|
|
|
|
| 404 |
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
| 405 |
metrics:
|
| 406 |
- type: map_at_1
|
| 407 |
+
value: 52.1
|
| 408 |
- type: map_at_10
|
| 409 |
+
value: 62.629999999999995
|
| 410 |
- type: map_at_100
|
| 411 |
+
value: 63.117000000000004
|
| 412 |
- type: map_at_1000
|
| 413 |
+
value: 63.134
|
| 414 |
- type: map_at_3
|
| 415 |
+
value: 60.267
|
| 416 |
- type: map_at_5
|
| 417 |
+
value: 61.777
|
| 418 |
- type: mrr_at_1
|
| 419 |
+
value: 52.1
|
| 420 |
- type: mrr_at_10
|
| 421 |
+
value: 62.629999999999995
|
| 422 |
- type: mrr_at_100
|
| 423 |
+
value: 63.117000000000004
|
| 424 |
- type: mrr_at_1000
|
| 425 |
+
value: 63.134
|
| 426 |
- type: mrr_at_3
|
| 427 |
+
value: 60.267
|
| 428 |
- type: mrr_at_5
|
| 429 |
+
value: 61.777
|
| 430 |
- type: ndcg_at_1
|
| 431 |
+
value: 52.1
|
| 432 |
- type: ndcg_at_10
|
| 433 |
+
value: 67.596
|
| 434 |
- type: ndcg_at_100
|
| 435 |
+
value: 69.95
|
| 436 |
- type: ndcg_at_1000
|
| 437 |
+
value: 70.33500000000001
|
| 438 |
- type: ndcg_at_3
|
| 439 |
value: 62.82600000000001
|
| 440 |
- type: ndcg_at_5
|
| 441 |
+
value: 65.546
|
| 442 |
- type: precision_at_1
|
| 443 |
+
value: 52.1
|
| 444 |
- type: precision_at_10
|
| 445 |
+
value: 8.309999999999999
|
| 446 |
- type: precision_at_100
|
| 447 |
value: 0.941
|
| 448 |
- type: precision_at_1000
|
| 449 |
value: 0.097
|
| 450 |
- type: precision_at_3
|
| 451 |
+
value: 23.400000000000002
|
| 452 |
- type: precision_at_5
|
| 453 |
value: 15.36
|
| 454 |
- type: recall_at_1
|
| 455 |
+
value: 52.1
|
| 456 |
- type: recall_at_10
|
| 457 |
+
value: 83.1
|
| 458 |
- type: recall_at_100
|
| 459 |
value: 94.1
|
| 460 |
- type: recall_at_1000
|
| 461 |
value: 97.0
|
| 462 |
- type: recall_at_3
|
| 463 |
+
value: 70.19999999999999
|
| 464 |
- type: recall_at_5
|
| 465 |
value: 76.8
|
| 466 |
- task:
|
|
|
|
| 473 |
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
| 474 |
metrics:
|
| 475 |
- type: accuracy
|
| 476 |
+
value: 51.773759138130046
|
| 477 |
- type: f1
|
| 478 |
+
value: 40.341407912920054
|
| 479 |
- task:
|
| 480 |
type: Classification
|
| 481 |
dataset:
|
|
|
|
| 501 |
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
| 502 |
metrics:
|
| 503 |
- type: cos_sim_pearson
|
| 504 |
+
value: 71.1397780205448
|
| 505 |
- type: cos_sim_spearman
|
| 506 |
+
value: 78.17368193033309
|
| 507 |
- type: euclidean_pearson
|
| 508 |
+
value: 77.4849177602368
|
| 509 |
- type: euclidean_spearman
|
| 510 |
+
value: 78.17369079663212
|
| 511 |
- type: manhattan_pearson
|
| 512 |
+
value: 77.47344305182406
|
| 513 |
- type: manhattan_spearman
|
| 514 |
+
value: 78.16454335155387
|
| 515 |
- task:
|
| 516 |
type: Reranking
|
| 517 |
dataset:
|
|
|
|
| 522 |
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
|
| 523 |
metrics:
|
| 524 |
- type: map
|
| 525 |
+
value: 27.76160559006673
|
| 526 |
- type: mrr
|
| 527 |
+
value: 28.02420634920635
|
| 528 |
- task:
|
| 529 |
type: Retrieval
|
| 530 |
dataset:
|
|
|
|
| 535 |
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
| 536 |
metrics:
|
| 537 |
- type: map_at_1
|
| 538 |
+
value: 65.661
|
| 539 |
- type: map_at_10
|
| 540 |
+
value: 74.752
|
| 541 |
- type: map_at_100
|
| 542 |
value: 75.091
|
| 543 |
- type: map_at_1000
|
| 544 |
+
value: 75.104
|
| 545 |
- type: map_at_3
|
| 546 |
+
value: 72.997
|
| 547 |
- type: map_at_5
|
| 548 |
+
value: 74.119
|
| 549 |
- type: mrr_at_1
|
| 550 |
+
value: 67.923
|
| 551 |
- type: mrr_at_10
|
| 552 |
+
value: 75.376
|
| 553 |
- type: mrr_at_100
|
| 554 |
+
value: 75.673
|
| 555 |
- type: mrr_at_1000
|
| 556 |
value: 75.685
|
| 557 |
- type: mrr_at_3
|
| 558 |
+
value: 73.856
|
| 559 |
- type: mrr_at_5
|
| 560 |
+
value: 74.82799999999999
|
| 561 |
- type: ndcg_at_1
|
| 562 |
+
value: 67.923
|
| 563 |
- type: ndcg_at_10
|
| 564 |
+
value: 78.424
|
| 565 |
- type: ndcg_at_100
|
| 566 |
+
value: 79.95100000000001
|
| 567 |
- type: ndcg_at_1000
|
| 568 |
value: 80.265
|
| 569 |
- type: ndcg_at_3
|
| 570 |
+
value: 75.101
|
| 571 |
- type: ndcg_at_5
|
| 572 |
+
value: 76.992
|
| 573 |
- type: precision_at_1
|
| 574 |
+
value: 67.923
|
| 575 |
- type: precision_at_10
|
| 576 |
+
value: 9.474
|
| 577 |
- type: precision_at_100
|
| 578 |
value: 1.023
|
| 579 |
- type: precision_at_1000
|
| 580 |
value: 0.105
|
| 581 |
- type: precision_at_3
|
| 582 |
+
value: 28.319
|
| 583 |
- type: precision_at_5
|
| 584 |
+
value: 17.986
|
| 585 |
- type: recall_at_1
|
| 586 |
+
value: 65.661
|
| 587 |
- type: recall_at_10
|
| 588 |
+
value: 89.09899999999999
|
| 589 |
- type: recall_at_100
|
| 590 |
+
value: 96.023
|
| 591 |
- type: recall_at_1000
|
| 592 |
value: 98.455
|
| 593 |
- type: recall_at_3
|
| 594 |
+
value: 80.314
|
| 595 |
- type: recall_at_5
|
| 596 |
+
value: 84.81
|
| 597 |
- task:
|
| 598 |
type: Classification
|
| 599 |
dataset:
|
|
|
|
| 604 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 605 |
metrics:
|
| 606 |
- type: accuracy
|
| 607 |
+
value: 75.86751849361131
|
| 608 |
- type: f1
|
| 609 |
+
value: 73.04918450508
|
| 610 |
- task:
|
| 611 |
type: Classification
|
| 612 |
dataset:
|
|
|
|
| 617 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 618 |
metrics:
|
| 619 |
- type: accuracy
|
| 620 |
+
value: 78.4364492266308
|
| 621 |
- type: f1
|
| 622 |
+
value: 78.120686034844
|
| 623 |
- task:
|
| 624 |
type: Retrieval
|
| 625 |
dataset:
|
|
|
|
| 630 |
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
| 631 |
metrics:
|
| 632 |
- type: map_at_1
|
| 633 |
+
value: 55.00000000000001
|
| 634 |
- type: map_at_10
|
| 635 |
+
value: 61.06399999999999
|
| 636 |
- type: map_at_100
|
| 637 |
+
value: 61.622
|
| 638 |
- type: map_at_1000
|
| 639 |
+
value: 61.663000000000004
|
| 640 |
- type: map_at_3
|
| 641 |
+
value: 59.583
|
| 642 |
- type: map_at_5
|
| 643 |
+
value: 60.373
|
| 644 |
- type: mrr_at_1
|
| 645 |
+
value: 55.2
|
| 646 |
- type: mrr_at_10
|
| 647 |
+
value: 61.168
|
| 648 |
- type: mrr_at_100
|
| 649 |
+
value: 61.726000000000006
|
| 650 |
- type: mrr_at_1000
|
| 651 |
+
value: 61.767
|
| 652 |
- type: mrr_at_3
|
| 653 |
+
value: 59.683
|
| 654 |
- type: mrr_at_5
|
| 655 |
+
value: 60.492999999999995
|
| 656 |
- type: ndcg_at_1
|
| 657 |
+
value: 55.00000000000001
|
| 658 |
- type: ndcg_at_10
|
| 659 |
+
value: 64.098
|
| 660 |
- type: ndcg_at_100
|
| 661 |
+
value: 67.05
|
| 662 |
- type: ndcg_at_1000
|
| 663 |
+
value: 68.262
|
| 664 |
- type: ndcg_at_3
|
| 665 |
+
value: 61.00600000000001
|
| 666 |
- type: ndcg_at_5
|
| 667 |
+
value: 62.439
|
| 668 |
- type: precision_at_1
|
| 669 |
+
value: 55.00000000000001
|
| 670 |
- type: precision_at_10
|
| 671 |
+
value: 7.37
|
| 672 |
- type: precision_at_100
|
| 673 |
+
value: 0.881
|
| 674 |
- type: precision_at_1000
|
| 675 |
value: 0.098
|
| 676 |
- type: precision_at_3
|
| 677 |
value: 21.7
|
| 678 |
- type: precision_at_5
|
| 679 |
+
value: 13.719999999999999
|
| 680 |
- type: recall_at_1
|
| 681 |
+
value: 55.00000000000001
|
| 682 |
- type: recall_at_10
|
| 683 |
+
value: 73.7
|
| 684 |
- type: recall_at_100
|
| 685 |
+
value: 88.1
|
| 686 |
- type: recall_at_1000
|
| 687 |
value: 97.8
|
| 688 |
- type: recall_at_3
|
| 689 |
value: 65.10000000000001
|
| 690 |
- type: recall_at_5
|
| 691 |
+
value: 68.60000000000001
|
| 692 |
- task:
|
| 693 |
type: Classification
|
| 694 |
dataset:
|
|
|
|
| 699 |
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
| 700 |
metrics:
|
| 701 |
- type: accuracy
|
| 702 |
+
value: 77.52666666666667
|
| 703 |
- type: f1
|
| 704 |
+
value: 77.49784731367215
|
| 705 |
- task:
|
| 706 |
type: PairClassification
|
| 707 |
dataset:
|
|
|
|
| 714 |
- type: cos_sim_accuracy
|
| 715 |
value: 81.10449377368705
|
| 716 |
- type: cos_sim_ap
|
| 717 |
+
value: 85.17742765935606
|
| 718 |
- type: cos_sim_f1
|
| 719 |
+
value: 83.00094966761633
|
| 720 |
- type: cos_sim_precision
|
| 721 |
+
value: 75.40983606557377
|
| 722 |
- type: cos_sim_recall
|
| 723 |
+
value: 92.29144667370645
|
| 724 |
- type: dot_accuracy
|
| 725 |
+
value: 81.10449377368705
|
| 726 |
- type: dot_ap
|
| 727 |
+
value: 85.17143850809614
|
| 728 |
- type: dot_f1
|
| 729 |
+
value: 83.01707779886148
|
| 730 |
- type: dot_precision
|
| 731 |
+
value: 75.36606373815677
|
| 732 |
- type: dot_recall
|
| 733 |
+
value: 92.39704329461456
|
| 734 |
- type: euclidean_accuracy
|
| 735 |
value: 81.10449377368705
|
| 736 |
- type: euclidean_ap
|
| 737 |
+
value: 85.17856775343333
|
| 738 |
- type: euclidean_f1
|
| 739 |
+
value: 83.00094966761633
|
| 740 |
- type: euclidean_precision
|
| 741 |
+
value: 75.40983606557377
|
| 742 |
- type: euclidean_recall
|
| 743 |
+
value: 92.29144667370645
|
| 744 |
- type: manhattan_accuracy
|
| 745 |
+
value: 81.05035192203573
|
| 746 |
- type: manhattan_ap
|
| 747 |
+
value: 85.14464459395809
|
| 748 |
- type: manhattan_f1
|
| 749 |
+
value: 82.96155671570953
|
| 750 |
- type: manhattan_precision
|
| 751 |
+
value: 75.3448275862069
|
| 752 |
- type: manhattan_recall
|
| 753 |
+
value: 92.29144667370645
|
| 754 |
- type: max_accuracy
|
| 755 |
+
value: 81.10449377368705
|
| 756 |
- type: max_ap
|
| 757 |
+
value: 85.17856775343333
|
| 758 |
- type: max_f1
|
| 759 |
+
value: 83.01707779886148
|
| 760 |
- task:
|
| 761 |
type: Classification
|
| 762 |
dataset:
|
|
|
|
| 767 |
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
| 768 |
metrics:
|
| 769 |
- type: accuracy
|
| 770 |
+
value: 93.71000000000001
|
| 771 |
- type: ap
|
| 772 |
+
value: 91.83202232349356
|
| 773 |
- type: f1
|
| 774 |
+
value: 93.69900560334331
|
| 775 |
- task:
|
| 776 |
type: STS
|
| 777 |
dataset:
|
|
|
|
| 782 |
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
| 783 |
metrics:
|
| 784 |
- type: cos_sim_pearson
|
| 785 |
+
value: 39.175047651512415
|
| 786 |
- type: cos_sim_spearman
|
| 787 |
+
value: 45.51434675777896
|
| 788 |
- type: euclidean_pearson
|
| 789 |
+
value: 44.864110004132286
|
| 790 |
- type: euclidean_spearman
|
| 791 |
+
value: 45.516433048896076
|
| 792 |
- type: manhattan_pearson
|
| 793 |
+
value: 44.87153627706517
|
| 794 |
- type: manhattan_spearman
|
| 795 |
+
value: 45.52862617925012
|
| 796 |
- task:
|
| 797 |
type: STS
|
| 798 |
dataset:
|
|
|
|
| 803 |
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
| 804 |
metrics:
|
| 805 |
- type: cos_sim_pearson
|
| 806 |
+
value: 34.249579701429084
|
| 807 |
- type: cos_sim_spearman
|
| 808 |
+
value: 37.30903127368978
|
| 809 |
- type: euclidean_pearson
|
| 810 |
+
value: 35.129438425253355
|
| 811 |
- type: euclidean_spearman
|
| 812 |
+
value: 37.308544018709085
|
| 813 |
- type: manhattan_pearson
|
| 814 |
+
value: 35.08936153503652
|
| 815 |
- type: manhattan_spearman
|
| 816 |
+
value: 37.25582901077839
|
| 817 |
- task:
|
| 818 |
type: STS
|
| 819 |
dataset:
|
|
|
|
| 824 |
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
| 825 |
metrics:
|
| 826 |
- type: cos_sim_pearson
|
| 827 |
+
value: 61.29309637460004
|
| 828 |
- type: cos_sim_spearman
|
| 829 |
+
value: 65.85136090376717
|
| 830 |
- type: euclidean_pearson
|
| 831 |
+
value: 64.04783990953557
|
| 832 |
- type: euclidean_spearman
|
| 833 |
+
value: 65.85036859610366
|
| 834 |
- type: manhattan_pearson
|
| 835 |
+
value: 63.995852552712186
|
| 836 |
- type: manhattan_spearman
|
| 837 |
+
value: 65.86508416749417
|
| 838 |
- task:
|
| 839 |
type: STS
|
| 840 |
dataset:
|
|
|
|
| 845 |
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
| 846 |
metrics:
|
| 847 |
- type: cos_sim_pearson
|
| 848 |
+
value: 81.5595940455587
|
| 849 |
- type: cos_sim_spearman
|
| 850 |
+
value: 82.72654634579749
|
| 851 |
- type: euclidean_pearson
|
| 852 |
+
value: 82.4892721061365
|
| 853 |
- type: euclidean_spearman
|
| 854 |
+
value: 82.72678504228253
|
| 855 |
- type: manhattan_pearson
|
| 856 |
+
value: 82.4770861422454
|
| 857 |
- type: manhattan_spearman
|
| 858 |
+
value: 82.71137469783162
|
| 859 |
- task:
|
| 860 |
type: Reranking
|
| 861 |
dataset:
|
|
|
|
| 866 |
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
| 867 |
metrics:
|
| 868 |
- type: map
|
| 869 |
+
value: 66.6159547610527
|
| 870 |
- type: mrr
|
| 871 |
+
value: 76.35739406347057
|
| 872 |
- task:
|
| 873 |
type: Retrieval
|
| 874 |
dataset:
|
|
|
|
| 879 |
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
| 880 |
metrics:
|
| 881 |
- type: map_at_1
|
| 882 |
+
value: 27.878999999999998
|
| 883 |
- type: map_at_10
|
| 884 |
+
value: 77.517
|
| 885 |
- type: map_at_100
|
| 886 |
+
value: 81.139
|
| 887 |
- type: map_at_1000
|
| 888 |
+
value: 81.204
|
| 889 |
- type: map_at_3
|
| 890 |
+
value: 54.728
|
| 891 |
- type: map_at_5
|
| 892 |
+
value: 67.128
|
| 893 |
- type: mrr_at_1
|
| 894 |
+
value: 90.509
|
| 895 |
- type: mrr_at_10
|
| 896 |
+
value: 92.964
|
| 897 |
- type: mrr_at_100
|
| 898 |
+
value: 93.045
|
| 899 |
- type: mrr_at_1000
|
| 900 |
+
value: 93.048
|
| 901 |
- type: mrr_at_3
|
| 902 |
+
value: 92.551
|
| 903 |
- type: mrr_at_5
|
| 904 |
+
value: 92.81099999999999
|
| 905 |
- type: ndcg_at_1
|
| 906 |
+
value: 90.509
|
| 907 |
- type: ndcg_at_10
|
| 908 |
+
value: 85.075
|
| 909 |
- type: ndcg_at_100
|
| 910 |
+
value: 88.656
|
| 911 |
- type: ndcg_at_1000
|
| 912 |
+
value: 89.25699999999999
|
| 913 |
- type: ndcg_at_3
|
| 914 |
+
value: 86.58200000000001
|
| 915 |
- type: ndcg_at_5
|
| 916 |
+
value: 85.138
|
| 917 |
- type: precision_at_1
|
| 918 |
+
value: 90.509
|
| 919 |
- type: precision_at_10
|
| 920 |
+
value: 42.05
|
| 921 |
- type: precision_at_100
|
| 922 |
+
value: 5.013999999999999
|
| 923 |
- type: precision_at_1000
|
| 924 |
+
value: 0.516
|
| 925 |
- type: precision_at_3
|
| 926 |
+
value: 75.551
|
| 927 |
- type: precision_at_5
|
| 928 |
+
value: 63.239999999999995
|
| 929 |
- type: recall_at_1
|
| 930 |
+
value: 27.878999999999998
|
| 931 |
- type: recall_at_10
|
| 932 |
+
value: 83.941
|
| 933 |
- type: recall_at_100
|
| 934 |
+
value: 95.568
|
| 935 |
- type: recall_at_1000
|
| 936 |
+
value: 98.55000000000001
|
| 937 |
- type: recall_at_3
|
| 938 |
+
value: 56.374
|
| 939 |
- type: recall_at_5
|
| 940 |
+
value: 70.435
|
| 941 |
- task:
|
| 942 |
type: Classification
|
| 943 |
dataset:
|
|
|
|
| 948 |
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
| 949 |
metrics:
|
| 950 |
- type: accuracy
|
| 951 |
+
value: 53.687
|
| 952 |
- type: f1
|
| 953 |
+
value: 51.86911933364655
|
| 954 |
- task:
|
| 955 |
type: Clustering
|
| 956 |
dataset:
|
|
|
|
| 961 |
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
| 962 |
metrics:
|
| 963 |
- type: v_measure
|
| 964 |
+
value: 74.65887489872564
|
| 965 |
- task:
|
| 966 |
type: Clustering
|
| 967 |
dataset:
|
|
|
|
| 972 |
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
| 973 |
metrics:
|
| 974 |
- type: v_measure
|
| 975 |
+
value: 69.00410995984436
|
| 976 |
- task:
|
| 977 |
type: Retrieval
|
| 978 |
dataset:
|
|
|
|
| 985 |
- type: map_at_1
|
| 986 |
value: 59.4
|
| 987 |
- type: map_at_10
|
| 988 |
+
value: 69.214
|
| 989 |
- type: map_at_100
|
|
|
|
|
|
|
| 990 |
value: 69.72699999999999
|
| 991 |
+
- type: map_at_1000
|
| 992 |
+
value: 69.743
|
| 993 |
- type: map_at_3
|
| 994 |
value: 67.717
|
| 995 |
- type: map_at_5
|
| 996 |
+
value: 68.782
|
| 997 |
- type: mrr_at_1
|
| 998 |
value: 59.4
|
| 999 |
- type: mrr_at_10
|
| 1000 |
+
value: 69.214
|
| 1001 |
- type: mrr_at_100
|
|
|
|
|
|
|
| 1002 |
value: 69.72699999999999
|
| 1003 |
+
- type: mrr_at_1000
|
| 1004 |
+
value: 69.743
|
| 1005 |
- type: mrr_at_3
|
| 1006 |
value: 67.717
|
| 1007 |
- type: mrr_at_5
|
| 1008 |
+
value: 68.782
|
| 1009 |
- type: ndcg_at_1
|
| 1010 |
value: 59.4
|
| 1011 |
- type: ndcg_at_10
|
| 1012 |
+
value: 73.32300000000001
|
| 1013 |
- type: ndcg_at_100
|
| 1014 |
+
value: 75.591
|
| 1015 |
- type: ndcg_at_1000
|
| 1016 |
+
value: 75.98700000000001
|
| 1017 |
- type: ndcg_at_3
|
| 1018 |
value: 70.339
|
| 1019 |
- type: ndcg_at_5
|
| 1020 |
+
value: 72.246
|
| 1021 |
- type: precision_at_1
|
| 1022 |
value: 59.4
|
| 1023 |
- type: precision_at_10
|
| 1024 |
+
value: 8.59
|
| 1025 |
- type: precision_at_100
|
| 1026 |
value: 0.96
|
| 1027 |
- type: precision_at_1000
|
|
|
|
| 1029 |
- type: precision_at_3
|
| 1030 |
value: 25.967000000000002
|
| 1031 |
- type: precision_at_5
|
| 1032 |
+
value: 16.5
|
| 1033 |
- type: recall_at_1
|
| 1034 |
value: 59.4
|
| 1035 |
- type: recall_at_10
|
| 1036 |
+
value: 85.9
|
| 1037 |
- type: recall_at_100
|
| 1038 |
value: 96.0
|
| 1039 |
- type: recall_at_1000
|
|
|
|
| 1041 |
- type: recall_at_3
|
| 1042 |
value: 77.9
|
| 1043 |
- type: recall_at_5
|
| 1044 |
+
value: 82.5
|
| 1045 |
- task:
|
| 1046 |
type: Classification
|
| 1047 |
dataset:
|
|
|
|
| 1052 |
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
| 1053 |
metrics:
|
| 1054 |
- type: accuracy
|
| 1055 |
+
value: 88.53
|
| 1056 |
- type: ap
|
| 1057 |
+
value: 73.56216166534062
|
| 1058 |
- type: f1
|
| 1059 |
+
value: 87.06093694294485
|
| 1060 |
---
|
| 1061 |
+
|
| 1062 |
+
|
| 1063 |
## acge model
|
| 1064 |
|
| 1065 |
acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了[Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147),如图所示:
|
|
|
|
| 1079 |
#### C-MTEB leaderboard (Chinese)
|
| 1080 |
|
| 1081 |
测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。
|
| 1082 |
+
根据[infgrad](https://huggingface.co/infgrad)的建议,选取不用的输入的长度作为测试,Sequence Length为512时测试最佳。
|
| 1083 |
|
| 1084 |
| Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|
| 1085 |
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|:-------:|:-------:|
|
| 1086 |
+
| acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 |
|
| 1087 |
+
| acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 |
|
| 1088 |
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
|
| 1089 |
| acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
|
| 1090 |
+
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 768 | 68.95 | 72.76 | 58.68 | 87.84 | 67.86 | 72.48 | 62.07 |
|
| 1091 |
+
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 512 | 69.07 | 72.75 | 58.7 | 87.84 | 67.99 | 72.93 | 62.09 |
|
| 1092 |
|
| 1093 |
#### Reproduce our results
|
| 1094 |
|