Dillon Pulliam commited on
Commit
23a255c
·
1 Parent(s): be38f54

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -0
README.md ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BERT-Large-Uncased for Sentiment Analysis
2
+ This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) originally released in ["BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"](https://arxiv.org/abs/1810.04805) and trained on the [Stanford Sentiment Treebank v2 (SST2)](https://nlp.stanford.edu/sentiment/); part of the [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com) benchmark. This model was been fine-tuned by the team at [AssemblyAI](https://www.assemblyai.com) and is released with the [corresponding blog post]().
3
+
4
+ ## Usage
5
+ To download and utilize this model for sentiment analysis please execute the following:
6
+ ```python
7
+ import torch.nn.functional as F
8
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
9
+ tokenizer = AutoTokenizer.from_pretrained("assemblyai/bert-large-uncased-sst2")
10
+ model = AutoModelForSequenceClassification.from_pretrained("assemblyai/bert-large-uncased-sst2")
11
+
12
+ tokenized_segments = tokenizer(["AssemblyAI is the best speech-to-text API for modern developers with performance being second to none!"], return_tensors="pt", padding=True, truncation=True)
13
+ tokenized_segments_input_ids, tokenized_segments_attention_mask = tokenized_segments.input_ids, tokenized_segments.attention_mask
14
+ model_predictions = F.softmax(model(input_ids=tokenized_segments_input_ids, attention_mask=tokenized_segments_attention_mask)['logits'], dim=1)
15
+
16
+ print("Negative probability: "+str(model_predictions[0][0].item()*100)+"%")
17
+ print("Positive probability: "+str(model_predictions[0][1].item()*100)+"%")
18
+ ```
19
+
20
+ For questions about how to use this model feel free to contact the team at [AssemblyAI](https://www.assemblyai.com)!