Update README.md
Browse files
README.md
CHANGED
|
@@ -1,9 +1,95 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
-
|
| 4 |
-
- pytorch_model_hub_mixin
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
pipeline_tag: tabular-regression
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# TabPFNMix Regressor
|
| 7 |
+
|
| 8 |
+
TabPFNMix regressor is a tabular foundation model that is pre-trained on purely synthetic datasets sampled from a mix of random regressors.
|
| 9 |
+
|
| 10 |
+
## Architecture
|
| 11 |
+
|
| 12 |
+
TabPFNMix is based on a 12-layer encoder-decoder Transformer of 37 M parameters. We use a pre-training strategy incorporating in-context learning, similar to that used by TabPFN and TabForestPFN.
|
| 13 |
+
|
| 14 |
+
## Usage
|
| 15 |
+
|
| 16 |
+
To use TabPFNMix regressor, install AutoGluon by running:
|
| 17 |
+
|
| 18 |
+
```sh
|
| 19 |
+
pip install autogluon
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
A minimal example showing how to perform fine-tuning and inference using TabPFNMix regressor
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
import pandas as pd
|
| 26 |
+
|
| 27 |
+
from autogluon.tabular import TabularPredictor
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
if __name__ == '__main__':
|
| 31 |
+
train_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
|
| 32 |
+
subsample_size = 5000
|
| 33 |
+
if subsample_size is not None and subsample_size < len(train_data):
|
| 34 |
+
train_data = train_data.sample(n=subsample_size, random_state=0)
|
| 35 |
+
test_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
|
| 36 |
+
|
| 37 |
+
tabpfnmix_default = {
|
| 38 |
+
"model_path_classifier": "autogluon/tabpfn-mix-1.0-classifier",
|
| 39 |
+
"model_path_regressor": "autogluon/tabpfn-mix-1.0-regressor",
|
| 40 |
+
"n_ensembles": 1,
|
| 41 |
+
"max_epochs": 30,
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
hyperparameters = {
|
| 45 |
+
"TABPFNMIX": [
|
| 46 |
+
tabpfnmix_default,
|
| 47 |
+
],
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
label = "age"
|
| 51 |
+
problem_type = "regression"
|
| 52 |
+
|
| 53 |
+
predictor = TabularPredictor(
|
| 54 |
+
label=label,
|
| 55 |
+
problem_type=problem_type,
|
| 56 |
+
)
|
| 57 |
+
predictor = predictor.fit(
|
| 58 |
+
train_data=train_data,
|
| 59 |
+
hyperparameters=hyperparameters,
|
| 60 |
+
verbosity=3,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
predictor.leaderboard(test_data, display=True)
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
## Citation
|
| 67 |
+
|
| 68 |
+
If you find TabPFNMix useful for your research, please consider citing the associated papers:
|
| 69 |
+
|
| 70 |
+
```
|
| 71 |
+
@article{erickson2020autogluon,
|
| 72 |
+
title={Autogluon-tabular: Robust and accurate automl for structured data},
|
| 73 |
+
author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
|
| 74 |
+
journal={arXiv preprint arXiv:2003.06505},
|
| 75 |
+
year={2020}
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
@article{hollmann2022tabpfn,
|
| 79 |
+
title={Tabpfn: A transformer that solves small tabular classification problems in a second},
|
| 80 |
+
author={Hollmann, Noah and M{\"u}ller, Samuel and Eggensperger, Katharina and Hutter, Frank},
|
| 81 |
+
journal={arXiv preprint arXiv:2207.01848},
|
| 82 |
+
year={2022}
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
@article{breejen2024context,
|
| 86 |
+
title={Why In-Context Learning Transformers are Tabular Data Classifiers},
|
| 87 |
+
author={Breejen, Felix den and Bae, Sangmin and Cha, Stephen and Yun, Se-Young},
|
| 88 |
+
journal={arXiv preprint arXiv:2405.13396},
|
| 89 |
+
year={2024}
|
| 90 |
+
}
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## License
|
| 94 |
+
|
| 95 |
+
This project is licensed under the Apache-2.0 License.
|