ERNIE-4.5-VL-424B-A47B-Base-PT / image_processing_ernie_45t_vl.py
SFLY5's picture
first commit
1bcb29b
raw
history blame
25.9 kB
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Ernie_45T_VL."""
import math
from typing import List, Optional, Union
from PIL import Image
import numpy as np
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
convert_to_rgb,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from transformers.image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_valid_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from transformers.utils import TensorType, logging
from transformers.video_utils import VideoInput
logger = logging.get_logger(__name__)
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def smart_resize(
height: int,
width: int,
factor: int = 28,
min_pixels: int = 4 * 28 * 28,
max_pixels: int = 16384 * 28 * 28,
):
"""
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
MAX_RATIO = 200
if max(height, width) / min(height, width) > MAX_RATIO:
if height > width:
new_width = max(factor, round_by_factor(width, factor))
new_height = floor_by_factor(new_width * MAX_RATIO, factor)
else:
new_height = max(factor, round_by_factor(height, factor))
new_width = floor_by_factor(new_height * MAX_RATIO, factor)
logger.info(
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)},\
resize to {max(new_height, new_width) / min(new_height, new_width)}"
)
height = new_height
width = new_width
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
if min_pixels > h_bar * w_bar or h_bar * w_bar > max_pixels:
raise ValueError(f"encounter invalid h_bar: {h_bar}, w_bar: {w_bar}")
return h_bar, w_bar
def is_scaled_image(image: np.ndarray) -> bool:
"""
Checks to see whether the pixel values have already been rescaled to [0, 1].
"""
if image.dtype == np.uint8:
return False
# It's possible the image has pixel values in [0, 255] but is of floating type
return np.min(image) >= 0 and np.max(image) <= 1
def make_batched_images(images) -> List[List[ImageInput]]:
"""
Accepts images in list or nested list format, and makes a list of images for preprocessing.
Args:
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
The input image.
Returns:
list: A list of images.
"""
if (
isinstance(images, (list, tuple))
and isinstance(images[0], (list, tuple))
and is_valid_image(images[0][0])
):
return [img for img_list in images for img in img_list]
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
return images
elif is_valid_image(images):
return [images]
raise ValueError(f"Could not make batched images from {images}")
# Copied from transformers.models.llava_next_video.image_processing_llava_next_video.make_batched_videos
def make_batched_videos(videos) -> List[VideoInput]:
"""dummy"""
if (
isinstance(videos, (list, tuple))
and isinstance(videos[0], (list, tuple))
and is_valid_image(videos[0][0])
):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
if isinstance(videos[0], Image.Image):
return [videos]
elif len(videos[0].shape) == 4:
return [list(video) for video in videos]
elif is_valid_image(videos) and len(videos.shape) == 4:
return [list(videos)]
raise ValueError(f"Could not make batched video from {videos}")
class Ernie_45T_VLImageProcessor(BaseImageProcessor):
r"""
Constructs a adaptive image processor that dynamically resizes images based on the original images.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel
in the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
min_pixels (`int`, *optional*, defaults to `56 * 56`):
The min pixels of the image to resize the image.
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
The max pixels of the image to resize the image.
patch_size (`int`, *optional*, defaults to 14):
The spacial patch size of the vision encoder.
temporal_conv_size (`int`, *optional*, defaults to 2):
The temporal conv size in resampler.
merge_size (`int`, *optional*, defaults to 2):
The merge size of the vision encoder to llm encoder.
"""
model_input_names = [
"pixel_values",
"image_grid_thw",
"pixel_values_videos",
"video_grid_thw",
]
def __init__(
self,
do_resize: bool = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[float, List[float]] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
min_pixels: int = 56 * 56,
max_pixels: int = 28 * 28 * 1280,
patch_size: int = 14,
temporal_conv_size: int = 2,
merge_size: int = 2,
**kwargs,
) -> None:
"""init"""
super().__init__(**kwargs)
self.do_resize = do_resize
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.patch_size = patch_size
self.temporal_conv_size = temporal_conv_size
self.merge_size = merge_size
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
self.do_convert_rgb = do_convert_rgb
def set_pixels(self, min_pixels=None, max_pixels=None, msg=""):
"""set_pixels"""
if min_pixels is not None:
assert (
isinstance(min_pixels, int) and min_pixels >= 0
), "min_pixels must be positive int"
logger.info(
f"{msg} Ernie_45T_VLImageProcessor set min_pixels = {min_pixels}"
)
self.min_pixels = min_pixels
self.size["min_pixels"] = int(min_pixels)
if max_pixels is not None:
assert (
isinstance(max_pixels, int) and max_pixels > 0
), "max_pixels must be positive int"
logger.info(
f"{msg} Ernie_45T_VLImageProcessor set max_pixels = {max_pixels}"
)
self.max_pixels = max_pixels
self.size["max_pixels"] = int(max_pixels)
def get_smarted_resize(self, height, width, min_pixels=None, max_pixels=None):
"""dummy"""
actual_min_pixels = min_pixels if min_pixels is not None else self.min_pixels
actual_max_pixels = max_pixels if max_pixels is not None else self.max_pixels
resized_height, resized_width = smart_resize(
height,
width,
factor=self.patch_size * self.merge_size,
min_pixels=actual_min_pixels,
max_pixels=actual_max_pixels,
)
return (resized_height, resized_width), (
resized_height // self.patch_size,
resized_width // self.patch_size,
)
def _preprocess(
self,
images: Union[ImageInput, VideoInput],
do_resize: bool = True,
resample: PILImageResampling = None,
do_rescale: bool = True,
rescale_factor: float = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = False,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
predetermined_grid_thw=None,
):
"""
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
Args:
images (`ImageInput` or `VideoInput`):
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255.
If pixel values range from 0 to 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to use if normalizing the image.
Can be a float or a list of floats corresponding to the number of channels in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to use if normalizing the image.
Can be a float or a list of floats corresponding to the number of channels in the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
height, width = get_image_size(images[0], channel_dim=input_data_format)
resized_height, resized_width = height, width
processed_images = []
if predetermined_grid_thw is not None:
assert len(predetermined_grid_thw) == len(
images
), f"len(predetermined_grid_thw) {len(predetermined_grid_thw)} == len(images) {len(images)}"
for img_idx, image in enumerate(images):
if do_resize:
if predetermined_grid_thw is not None:
(resized_height, resized_width) = predetermined_grid_thw[img_idx]
resized_height *= self.patch_size
resized_width *= self.patch_size
else:
resized_height, resized_width = smart_resize(
height,
width,
factor=self.patch_size * self.merge_size,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
image = resize(
image,
size=(resized_height, resized_width),
resample=resample,
data_format=input_data_format,
)
if do_rescale:
image = rescale(
image, scale=rescale_factor, data_format=input_data_format
)
if do_normalize:
image = normalize(
image=image,
mean=image_mean,
std=image_std,
data_format=input_data_format,
)
image = to_channel_dimension_format(
image, data_format, input_channel_dim=input_data_format
) # [C, H, W]
processed_images.append(image)
patches = np.array(processed_images)
if data_format == ChannelDimension.LAST:
patches = patches.transpose([0, 3, 1, 2])
channel = patches.shape[1] # [time, C, H, W]
grid_t = patches.shape[0]
grid_h, grid_w = (
resized_height // self.patch_size,
resized_width // self.patch_size,
)
patches = patches.reshape(
[
grid_t,
channel,
grid_h // self.merge_size,
self.merge_size,
self.patch_size,
grid_w // self.merge_size,
self.merge_size,
self.patch_size,
]
)
# [grid_t, grid_h/merge_size, grid_w/merge_size, merge_size, merge_size, C, psz, psz]
patches = patches.transpose([0, 2, 5, 3, 6, 1, 4, 7])
flatten_patches = patches.reshape(
[grid_t * grid_h * grid_w, channel * self.patch_size * self.patch_size]
) # [grid_t * grid_h * grid_w, C * psz * psz]
return flatten_patches, (grid_t, grid_h, grid_w)
def preprocess(
self,
images: ImageInput,
videos: VideoInput = None,
do_resize: bool = True,
size: Optional[Union[int, List[int]]] = None,
resample: PILImageResampling = None,
do_rescale: bool = True,
rescale_factor: float = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
predetermined_grid_thw=None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
videos (`VideoInput`):
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = (
rescale_factor if rescale_factor is not None else self.rescale_factor
)
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = (
do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
)
if images is not None:
images = make_batched_images(images)
if images is not None and not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor."
)
data = {}
if images is not None:
pixel_values, vision_grid_thws = [], []
for img_idx, image in enumerate(images):
if predetermined_grid_thw is not None:
predetermined_grid_thw_one = [predetermined_grid_thw[img_idx]]
else:
predetermined_grid_thw_one = None
patches, image_grid_thw = self._preprocess(
image,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
predetermined_grid_thw=predetermined_grid_thw_one,
)
pixel_values.extend(patches)
vision_grid_thws.append(image_grid_thw)
pixel_values = np.array(pixel_values)
vision_grid_thws = np.array(vision_grid_thws)
data.update(
{"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
)
if videos is not None:
videos = make_batched_videos(videos)
pixel_values, vision_grid_thws = [], []
for images in videos:
patches, video_grid_thw = self._preprocess(
images,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
predetermined_grid_thw=predetermined_grid_thw,
)
pixel_values.extend(patches)
vision_grid_thws.append(video_grid_thw)
pixel_values = np.array(pixel_values)
vision_grid_thws = np.array(vision_grid_thws)
data.update(
{
"pixel_values_videos": pixel_values,
"video_grid_thw": vision_grid_thws,
}
)
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["Ernie_45T_VLImageProcessor"]