|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Image processor class for Ernie_45T_VL.""" |
|
|
|
|
|
import math |
|
|
from typing import List, Optional, Union |
|
|
from PIL import Image |
|
|
import numpy as np |
|
|
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature |
|
|
from transformers.image_transforms import ( |
|
|
convert_to_rgb, |
|
|
normalize, |
|
|
rescale, |
|
|
resize, |
|
|
to_channel_dimension_format, |
|
|
) |
|
|
from transformers.image_utils import ( |
|
|
OPENAI_CLIP_MEAN, |
|
|
OPENAI_CLIP_STD, |
|
|
ChannelDimension, |
|
|
ImageInput, |
|
|
PILImageResampling, |
|
|
get_image_size, |
|
|
infer_channel_dimension_format, |
|
|
is_valid_image, |
|
|
make_list_of_images, |
|
|
to_numpy_array, |
|
|
valid_images, |
|
|
) |
|
|
from transformers.utils import TensorType, logging |
|
|
from transformers.video_utils import VideoInput |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
def round_by_factor(number: int, factor: int) -> int: |
|
|
"""Returns the closest integer to 'number' that is divisible by 'factor'.""" |
|
|
return round(number / factor) * factor |
|
|
|
|
|
|
|
|
def ceil_by_factor(number: int, factor: int) -> int: |
|
|
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" |
|
|
return math.ceil(number / factor) * factor |
|
|
|
|
|
|
|
|
def floor_by_factor(number: int, factor: int) -> int: |
|
|
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" |
|
|
return math.floor(number / factor) * factor |
|
|
|
|
|
|
|
|
def smart_resize( |
|
|
height: int, |
|
|
width: int, |
|
|
factor: int = 28, |
|
|
min_pixels: int = 4 * 28 * 28, |
|
|
max_pixels: int = 16384 * 28 * 28, |
|
|
): |
|
|
""" |
|
|
Rescales the image so that the following conditions are met: |
|
|
|
|
|
1. Both dimensions (height and width) are divisible by 'factor'. |
|
|
|
|
|
2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. |
|
|
|
|
|
3. The aspect ratio of the image is maintained as closely as possible. |
|
|
""" |
|
|
MAX_RATIO = 200 |
|
|
if max(height, width) / min(height, width) > MAX_RATIO: |
|
|
if height > width: |
|
|
new_width = max(factor, round_by_factor(width, factor)) |
|
|
new_height = floor_by_factor(new_width * MAX_RATIO, factor) |
|
|
else: |
|
|
new_height = max(factor, round_by_factor(height, factor)) |
|
|
new_width = floor_by_factor(new_height * MAX_RATIO, factor) |
|
|
|
|
|
logger.info( |
|
|
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)},\ |
|
|
resize to {max(new_height, new_width) / min(new_height, new_width)}" |
|
|
) |
|
|
|
|
|
height = new_height |
|
|
width = new_width |
|
|
|
|
|
h_bar = max(factor, round_by_factor(height, factor)) |
|
|
w_bar = max(factor, round_by_factor(width, factor)) |
|
|
if h_bar * w_bar > max_pixels: |
|
|
beta = math.sqrt((height * width) / max_pixels) |
|
|
h_bar = floor_by_factor(height / beta, factor) |
|
|
w_bar = floor_by_factor(width / beta, factor) |
|
|
elif h_bar * w_bar < min_pixels: |
|
|
beta = math.sqrt(min_pixels / (height * width)) |
|
|
h_bar = ceil_by_factor(height * beta, factor) |
|
|
w_bar = ceil_by_factor(width * beta, factor) |
|
|
|
|
|
if min_pixels > h_bar * w_bar or h_bar * w_bar > max_pixels: |
|
|
raise ValueError(f"encounter invalid h_bar: {h_bar}, w_bar: {w_bar}") |
|
|
|
|
|
return h_bar, w_bar |
|
|
|
|
|
|
|
|
def is_scaled_image(image: np.ndarray) -> bool: |
|
|
""" |
|
|
Checks to see whether the pixel values have already been rescaled to [0, 1]. |
|
|
""" |
|
|
if image.dtype == np.uint8: |
|
|
return False |
|
|
|
|
|
|
|
|
return np.min(image) >= 0 and np.max(image) <= 1 |
|
|
|
|
|
|
|
|
def make_batched_images(images) -> List[List[ImageInput]]: |
|
|
""" |
|
|
Accepts images in list or nested list format, and makes a list of images for preprocessing. |
|
|
|
|
|
Args: |
|
|
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): |
|
|
The input image. |
|
|
|
|
|
Returns: |
|
|
list: A list of images. |
|
|
""" |
|
|
if ( |
|
|
isinstance(images, (list, tuple)) |
|
|
and isinstance(images[0], (list, tuple)) |
|
|
and is_valid_image(images[0][0]) |
|
|
): |
|
|
return [img for img_list in images for img in img_list] |
|
|
|
|
|
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): |
|
|
return images |
|
|
|
|
|
elif is_valid_image(images): |
|
|
return [images] |
|
|
|
|
|
raise ValueError(f"Could not make batched images from {images}") |
|
|
|
|
|
|
|
|
|
|
|
def make_batched_videos(videos) -> List[VideoInput]: |
|
|
"""dummy""" |
|
|
if ( |
|
|
isinstance(videos, (list, tuple)) |
|
|
and isinstance(videos[0], (list, tuple)) |
|
|
and is_valid_image(videos[0][0]) |
|
|
): |
|
|
return videos |
|
|
|
|
|
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): |
|
|
if isinstance(videos[0], Image.Image): |
|
|
return [videos] |
|
|
elif len(videos[0].shape) == 4: |
|
|
return [list(video) for video in videos] |
|
|
|
|
|
elif is_valid_image(videos) and len(videos.shape) == 4: |
|
|
return [list(videos)] |
|
|
|
|
|
raise ValueError(f"Could not make batched video from {videos}") |
|
|
|
|
|
|
|
|
class Ernie_45T_VLImageProcessor(BaseImageProcessor): |
|
|
r""" |
|
|
Constructs a adaptive image processor that dynamically resizes images based on the original images. |
|
|
|
|
|
Args: |
|
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
|
Whether to resize the image's (height, width) dimensions. |
|
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): |
|
|
Resampling filter to use when resizing the image. |
|
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
|
Whether to rescale the image by the specified scale `rescale_factor`. |
|
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
|
Scale factor to use if rescaling the image. |
|
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
|
Whether to normalize the image. |
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): |
|
|
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. |
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): |
|
|
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel |
|
|
in the image. |
|
|
do_convert_rgb (`bool`, *optional*, defaults to `True`): |
|
|
Whether to convert the image to RGB. |
|
|
min_pixels (`int`, *optional*, defaults to `56 * 56`): |
|
|
The min pixels of the image to resize the image. |
|
|
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`): |
|
|
The max pixels of the image to resize the image. |
|
|
patch_size (`int`, *optional*, defaults to 14): |
|
|
The spacial patch size of the vision encoder. |
|
|
temporal_conv_size (`int`, *optional*, defaults to 2): |
|
|
The temporal conv size in resampler. |
|
|
merge_size (`int`, *optional*, defaults to 2): |
|
|
The merge size of the vision encoder to llm encoder. |
|
|
""" |
|
|
|
|
|
model_input_names = [ |
|
|
"pixel_values", |
|
|
"image_grid_thw", |
|
|
"pixel_values_videos", |
|
|
"video_grid_thw", |
|
|
] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
do_resize: bool = True, |
|
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
|
do_rescale: bool = True, |
|
|
rescale_factor: Union[float, List[float]] = 1 / 255, |
|
|
do_normalize: bool = True, |
|
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
|
image_std: Optional[Union[float, List[float]]] = None, |
|
|
do_convert_rgb: bool = True, |
|
|
min_pixels: int = 56 * 56, |
|
|
max_pixels: int = 28 * 28 * 1280, |
|
|
patch_size: int = 14, |
|
|
temporal_conv_size: int = 2, |
|
|
merge_size: int = 2, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
"""init""" |
|
|
super().__init__(**kwargs) |
|
|
self.do_resize = do_resize |
|
|
self.resample = resample |
|
|
self.do_rescale = do_rescale |
|
|
self.rescale_factor = rescale_factor |
|
|
self.do_normalize = do_normalize |
|
|
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN |
|
|
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD |
|
|
self.min_pixels = min_pixels |
|
|
self.max_pixels = max_pixels |
|
|
self.patch_size = patch_size |
|
|
self.temporal_conv_size = temporal_conv_size |
|
|
self.merge_size = merge_size |
|
|
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels} |
|
|
self.do_convert_rgb = do_convert_rgb |
|
|
|
|
|
def set_pixels(self, min_pixels=None, max_pixels=None, msg=""): |
|
|
"""set_pixels""" |
|
|
if min_pixels is not None: |
|
|
assert ( |
|
|
isinstance(min_pixels, int) and min_pixels >= 0 |
|
|
), "min_pixels must be positive int" |
|
|
logger.info( |
|
|
f"{msg} Ernie_45T_VLImageProcessor set min_pixels = {min_pixels}" |
|
|
) |
|
|
self.min_pixels = min_pixels |
|
|
self.size["min_pixels"] = int(min_pixels) |
|
|
if max_pixels is not None: |
|
|
assert ( |
|
|
isinstance(max_pixels, int) and max_pixels > 0 |
|
|
), "max_pixels must be positive int" |
|
|
logger.info( |
|
|
f"{msg} Ernie_45T_VLImageProcessor set max_pixels = {max_pixels}" |
|
|
) |
|
|
self.max_pixels = max_pixels |
|
|
self.size["max_pixels"] = int(max_pixels) |
|
|
|
|
|
def get_smarted_resize(self, height, width, min_pixels=None, max_pixels=None): |
|
|
"""dummy""" |
|
|
actual_min_pixels = min_pixels if min_pixels is not None else self.min_pixels |
|
|
actual_max_pixels = max_pixels if max_pixels is not None else self.max_pixels |
|
|
resized_height, resized_width = smart_resize( |
|
|
height, |
|
|
width, |
|
|
factor=self.patch_size * self.merge_size, |
|
|
min_pixels=actual_min_pixels, |
|
|
max_pixels=actual_max_pixels, |
|
|
) |
|
|
return (resized_height, resized_width), ( |
|
|
resized_height // self.patch_size, |
|
|
resized_width // self.patch_size, |
|
|
) |
|
|
|
|
|
def _preprocess( |
|
|
self, |
|
|
images: Union[ImageInput, VideoInput], |
|
|
do_resize: bool = True, |
|
|
resample: PILImageResampling = None, |
|
|
do_rescale: bool = True, |
|
|
rescale_factor: float = 1 / 255, |
|
|
do_normalize: bool = True, |
|
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
|
image_std: Optional[Union[float, List[float]]] = None, |
|
|
do_convert_rgb: bool = False, |
|
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, |
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
|
predetermined_grid_thw=None, |
|
|
): |
|
|
""" |
|
|
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`. |
|
|
|
|
|
Args: |
|
|
images (`ImageInput` or `VideoInput`): |
|
|
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. |
|
|
If pixel values range from 0 to 1, set `do_rescale=False`. |
|
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
|
Whether to resize the image. |
|
|
resample (`PILImageResampling`, *optional*, defaults to `self.resample`): |
|
|
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums. |
|
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
|
Whether to rescale the image. |
|
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
|
Scale factor to use if rescaling the image. |
|
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
|
Whether to normalize the image. |
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
|
Mean to use if normalizing the image. |
|
|
Can be a float or a list of floats corresponding to the number of channels in the image. |
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
|
Standard deviation to use if normalizing the image. |
|
|
Can be a float or a list of floats corresponding to the number of channels in the image. |
|
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): |
|
|
Whether to convert the image to RGB. |
|
|
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
|
The channel dimension format for the output image. Can be one of: |
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
- Unset: Use the channel dimension format of the input image. |
|
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
|
The channel dimension format for the input image. Can be one of: |
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
|
""" |
|
|
images = make_list_of_images(images) |
|
|
|
|
|
if do_convert_rgb: |
|
|
images = [convert_to_rgb(image) for image in images] |
|
|
|
|
|
|
|
|
images = [to_numpy_array(image) for image in images] |
|
|
|
|
|
if is_scaled_image(images[0]) and do_rescale: |
|
|
logger.warning_once( |
|
|
"It looks like you are trying to rescale already rescaled images. If the input" |
|
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." |
|
|
) |
|
|
if input_data_format is None: |
|
|
|
|
|
input_data_format = infer_channel_dimension_format(images[0]) |
|
|
|
|
|
height, width = get_image_size(images[0], channel_dim=input_data_format) |
|
|
resized_height, resized_width = height, width |
|
|
processed_images = [] |
|
|
|
|
|
if predetermined_grid_thw is not None: |
|
|
assert len(predetermined_grid_thw) == len( |
|
|
images |
|
|
), f"len(predetermined_grid_thw) {len(predetermined_grid_thw)} == len(images) {len(images)}" |
|
|
|
|
|
for img_idx, image in enumerate(images): |
|
|
if do_resize: |
|
|
if predetermined_grid_thw is not None: |
|
|
(resized_height, resized_width) = predetermined_grid_thw[img_idx] |
|
|
resized_height *= self.patch_size |
|
|
resized_width *= self.patch_size |
|
|
else: |
|
|
resized_height, resized_width = smart_resize( |
|
|
height, |
|
|
width, |
|
|
factor=self.patch_size * self.merge_size, |
|
|
min_pixels=self.min_pixels, |
|
|
max_pixels=self.max_pixels, |
|
|
) |
|
|
|
|
|
image = resize( |
|
|
image, |
|
|
size=(resized_height, resized_width), |
|
|
resample=resample, |
|
|
data_format=input_data_format, |
|
|
) |
|
|
if do_rescale: |
|
|
image = rescale( |
|
|
image, scale=rescale_factor, data_format=input_data_format |
|
|
) |
|
|
|
|
|
if do_normalize: |
|
|
image = normalize( |
|
|
image=image, |
|
|
mean=image_mean, |
|
|
std=image_std, |
|
|
data_format=input_data_format, |
|
|
) |
|
|
|
|
|
image = to_channel_dimension_format( |
|
|
image, data_format, input_channel_dim=input_data_format |
|
|
) |
|
|
|
|
|
processed_images.append(image) |
|
|
patches = np.array(processed_images) |
|
|
if data_format == ChannelDimension.LAST: |
|
|
patches = patches.transpose([0, 3, 1, 2]) |
|
|
|
|
|
channel = patches.shape[1] |
|
|
grid_t = patches.shape[0] |
|
|
grid_h, grid_w = ( |
|
|
resized_height // self.patch_size, |
|
|
resized_width // self.patch_size, |
|
|
) |
|
|
patches = patches.reshape( |
|
|
[ |
|
|
grid_t, |
|
|
channel, |
|
|
grid_h // self.merge_size, |
|
|
self.merge_size, |
|
|
self.patch_size, |
|
|
grid_w // self.merge_size, |
|
|
self.merge_size, |
|
|
self.patch_size, |
|
|
] |
|
|
) |
|
|
|
|
|
patches = patches.transpose([0, 2, 5, 3, 6, 1, 4, 7]) |
|
|
|
|
|
flatten_patches = patches.reshape( |
|
|
[grid_t * grid_h * grid_w, channel * self.patch_size * self.patch_size] |
|
|
) |
|
|
|
|
|
return flatten_patches, (grid_t, grid_h, grid_w) |
|
|
|
|
|
def preprocess( |
|
|
self, |
|
|
images: ImageInput, |
|
|
videos: VideoInput = None, |
|
|
do_resize: bool = True, |
|
|
size: Optional[Union[int, List[int]]] = None, |
|
|
resample: PILImageResampling = None, |
|
|
do_rescale: bool = True, |
|
|
rescale_factor: float = 1 / 255, |
|
|
do_normalize: bool = True, |
|
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
|
image_std: Optional[Union[float, List[float]]] = None, |
|
|
do_convert_rgb: bool = False, |
|
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, |
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
|
predetermined_grid_thw=None, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
images (`ImageInput`): |
|
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
|
videos (`VideoInput`): |
|
|
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If |
|
|
passing in videos with pixel values between 0 and 1, set `do_rescale=False`. |
|
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
|
Whether to resize the image. |
|
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
|
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with |
|
|
the longest edge resized to keep the input aspect ratio. |
|
|
resample (`int`, *optional*, defaults to `self.resample`): |
|
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only |
|
|
has an effect if `do_resize` is set to `True`. |
|
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
|
Whether to rescale the image. |
|
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
|
Whether to normalize the image. |
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. |
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to |
|
|
`True`. |
|
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): |
|
|
Whether to convert the image to RGB. |
|
|
return_tensors (`str` or `TensorType`, *optional*): |
|
|
The type of tensors to return. Can be one of: |
|
|
- Unset: Return a list of `np.ndarray`. |
|
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
|
The channel dimension format for the output image. Can be one of: |
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
- Unset: Use the channel dimension format of the input image. |
|
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
|
from the input image. Can be one of: |
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
|
|
|
|
""" |
|
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
|
size = size if size is not None else self.size |
|
|
resample = resample if resample is not None else self.resample |
|
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
|
rescale_factor = ( |
|
|
rescale_factor if rescale_factor is not None else self.rescale_factor |
|
|
) |
|
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
|
image_std = image_std if image_std is not None else self.image_std |
|
|
do_convert_rgb = ( |
|
|
do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb |
|
|
) |
|
|
|
|
|
if images is not None: |
|
|
images = make_batched_images(images) |
|
|
|
|
|
if images is not None and not valid_images(images): |
|
|
raise ValueError( |
|
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
|
"torch.Tensor." |
|
|
) |
|
|
|
|
|
data = {} |
|
|
if images is not None: |
|
|
pixel_values, vision_grid_thws = [], [] |
|
|
for img_idx, image in enumerate(images): |
|
|
if predetermined_grid_thw is not None: |
|
|
predetermined_grid_thw_one = [predetermined_grid_thw[img_idx]] |
|
|
else: |
|
|
predetermined_grid_thw_one = None |
|
|
patches, image_grid_thw = self._preprocess( |
|
|
image, |
|
|
do_resize=do_resize, |
|
|
resample=resample, |
|
|
do_rescale=do_rescale, |
|
|
rescale_factor=rescale_factor, |
|
|
do_normalize=do_normalize, |
|
|
image_mean=image_mean, |
|
|
image_std=image_std, |
|
|
data_format=data_format, |
|
|
do_convert_rgb=do_convert_rgb, |
|
|
input_data_format=input_data_format, |
|
|
predetermined_grid_thw=predetermined_grid_thw_one, |
|
|
) |
|
|
pixel_values.extend(patches) |
|
|
vision_grid_thws.append(image_grid_thw) |
|
|
pixel_values = np.array(pixel_values) |
|
|
vision_grid_thws = np.array(vision_grid_thws) |
|
|
data.update( |
|
|
{"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws} |
|
|
) |
|
|
|
|
|
if videos is not None: |
|
|
videos = make_batched_videos(videos) |
|
|
pixel_values, vision_grid_thws = [], [] |
|
|
for images in videos: |
|
|
patches, video_grid_thw = self._preprocess( |
|
|
images, |
|
|
do_resize=do_resize, |
|
|
resample=resample, |
|
|
do_rescale=do_rescale, |
|
|
rescale_factor=rescale_factor, |
|
|
do_normalize=do_normalize, |
|
|
image_mean=image_mean, |
|
|
image_std=image_std, |
|
|
data_format=data_format, |
|
|
do_convert_rgb=do_convert_rgb, |
|
|
input_data_format=input_data_format, |
|
|
predetermined_grid_thw=predetermined_grid_thw, |
|
|
) |
|
|
pixel_values.extend(patches) |
|
|
vision_grid_thws.append(video_grid_thw) |
|
|
pixel_values = np.array(pixel_values) |
|
|
vision_grid_thws = np.array(vision_grid_thws) |
|
|
|
|
|
data.update( |
|
|
{ |
|
|
"pixel_values_videos": pixel_values, |
|
|
"video_grid_thw": vision_grid_thws, |
|
|
} |
|
|
) |
|
|
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|
|
|
|
|
|
|
__all__ = ["Ernie_45T_VLImageProcessor"] |
|
|
|