Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: ko
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
tags:
|
| 5 |
+
- korean
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# KcBERT: Korean comments BERT
|
| 9 |
+
|
| 10 |
+
** Updates on 2021.04.07 **
|
| 11 |
+
|
| 12 |
+
- KcELECTRA๊ฐ ๋ฆด๋ฆฌ์ฆ ๋์์ต๋๋ค!๐ค
|
| 13 |
+
- KcELECTRA๋ ๋ณด๋ค ๋ ๋ง์ ๋ฐ์ดํฐ์
, ๊ทธ๋ฆฌ๊ณ ๋ ํฐ General vocab์ ํตํด KcBERT ๋๋น **๋ชจ๋ ํ์คํฌ์์ ๋ ๋์ ์ฑ๋ฅ**์ ๋ณด์
๋๋ค.
|
| 14 |
+
- ์๋ ๊นํ ๋งํฌ์์ ์ง์ ์ฌ์ฉํด๋ณด์ธ์!
|
| 15 |
+
- https://github.com/Beomi/KcELECTRA
|
| 16 |
+
|
| 17 |
+
** Updates on 2021.03.14 **
|
| 18 |
+
|
| 19 |
+
- KcBERT Paper ์ธ์ฉ ํ๊ธฐ๋ฅผ ์ถ๊ฐํ์์ต๋๋ค.(bibtex)
|
| 20 |
+
- KcBERT-finetune Performance score๋ฅผ ๋ณธ๋ฌธ์ ์ถ๊ฐํ์์ต๋๋ค.
|
| 21 |
+
|
| 22 |
+
** Updates on 2020.12.04 **
|
| 23 |
+
|
| 24 |
+
Huggingface Transformers๊ฐ v4.0.0์ผ๋ก ์
๋ฐ์ดํธ๋จ์ ๋ฐ๋ผ Tutorial์ ์ฝ๋๊ฐ ์ผ๋ถ ๋ณ๊ฒฝ๋์์ต๋๋ค.
|
| 25 |
+
|
| 26 |
+
์
๋ฐ์ดํธ๋ KcBERT-Large NSMC Finetuning Colab: <a href="https://colab.research.google.com/drive/1dFC0FL-521m7CL_PSd8RLKq67jgTJVhL?usp=sharing">
|
| 27 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 28 |
+
</a>
|
| 29 |
+
|
| 30 |
+
** Updates on 2020.09.11 **
|
| 31 |
+
|
| 32 |
+
KcBERT๋ฅผ Google Colab์์ TPU๋ฅผ ํตํด ํ์ตํ ์ ์๋ ํํ ๋ฆฌ์ผ์ ์ ๊ณตํฉ๋๋ค! ์๋ ๋ฒํผ์ ๋๋ฌ๋ณด์ธ์.
|
| 33 |
+
|
| 34 |
+
Colab์์ TPU๋ก KcBERT Pretrain ํด๋ณด๊ธฐ: <a href="https://colab.research.google.com/drive/1lYBYtaXqt9S733OXdXvrvC09ysKFN30W">
|
| 35 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 36 |
+
</a>
|
| 37 |
+
|
| 38 |
+
ํ
์คํธ ๋ถ๋๋ง ์ ์ฒด 12G ํ
์คํธ ์ค ์ผ๋ถ(144MB)๋ก ์ค์ฌ ํ์ต์ ์งํํฉ๋๋ค.
|
| 39 |
+
|
| 40 |
+
ํ๊ตญ์ด ๋ฐ์ดํฐ์
/์ฝํผ์ค๋ฅผ ์ข๋ ์ฝ๊ฒ ์ฌ์ฉํ ์ ์๋ [Korpora](https://github.com/ko-nlp/Korpora) ํจํค์ง๋ฅผ ์ฌ์ฉํฉ๋๋ค.
|
| 41 |
+
|
| 42 |
+
** Updates on 2020.09.08 **
|
| 43 |
+
|
| 44 |
+
Github Release๋ฅผ ํตํด ํ์ต ๋ฐ์ดํฐ๋ฅผ ์
๋ก๋ํ์์ต๋๋ค.
|
| 45 |
+
|
| 46 |
+
๋ค๋ง ํ ํ์ผ๋น 2GB ์ด๋ด์ ์ ์ฝ์ผ๋ก ์ธํด ๋ถํ ์์ถ๋์ด์์ต๋๋ค.
|
| 47 |
+
|
| 48 |
+
์๋ ๋งํฌ๋ฅผ ํตํด ๋ฐ์์ฃผ์ธ์. (๊ฐ์
์์ด ๋ฐ์ ์ ์์ด์. ๋ถํ ์์ถ)
|
| 49 |
+
|
| 50 |
+
๋ง์ฝ ํ ํ์ผ๋ก ๋ฐ๊ณ ์ถ์ผ์๊ฑฐ๋/Kaggle์์ ๋ฐ์ดํฐ๋ฅผ ์ดํด๋ณด๊ณ ์ถ์ผ์๋ค๋ฉด ์๋์ ์บ๊ธ ๋ฐ์ดํฐ์
์ ์ด์ฉํด์ฃผ์ธ์.
|
| 51 |
+
|
| 52 |
+
- Github๋ฆด๋ฆฌ์ฆ: https://github.com/Beomi/KcBERT/releases/tag/TrainData_v1
|
| 53 |
+
|
| 54 |
+
** Updates on 2020.08.22 **
|
| 55 |
+
|
| 56 |
+
Pretrain Dataset ๊ณต๊ฐ
|
| 57 |
+
|
| 58 |
+
- ์บ๊ธ: https://www.kaggle.com/junbumlee/kcbert-pretraining-corpus-korean-news-comments (ํ ํ์ผ๋ก ๋ฐ์ ์ ์์ด์. ๋จ์ผํ์ผ)
|
| 59 |
+
|
| 60 |
+
Kaggle์ ํ์ต์ ์ํด ์ ์ ํ(์๋ `clean`์ฒ๋ฆฌ๋ฅผ ๊ฑฐ์น) Dataset์ ๊ณต๊ฐํ์์ต๋๋ค!
|
| 61 |
+
|
| 62 |
+
์ง์ ๋ค์ด๋ฐ์ผ์
์ ๋ค์ํ Task์ ํ์ต์ ์งํํด๋ณด์ธ์ :)
|
| 63 |
+
|
| 64 |
+
---
|
| 65 |
+
|
| 66 |
+
๊ณต๊ฐ๋ ํ๊ตญ์ด BERT๋ ๋๋ถ๋ถ ํ๊ตญ์ด ์ํค, ๋ด์ค ๊ธฐ์ฌ, ์ฑ
๋ฑ ์ ์ ์ ๋ ๋ฐ์ดํฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ์ตํ ๋ชจ๋ธ์
๋๋ค. ํํธ, ์ค์ ๋ก NSMC์ ๊ฐ์ ๋๊ธํ ๋ฐ์ดํฐ์
์ ์ ์ ๋์ง ์์๊ณ ๊ตฌ์ด์ฒด ํน์ง์ ์ ์กฐ์ด๊ฐ ๋ง์ผ๋ฉฐ, ์คํ์ ๋ฑ ๊ณต์์ ์ธ ๊ธ์ฐ๊ธฐ์์ ๋ํ๋์ง ์๋ ํํ๋ค์ด ๋น๋ฒํ๊ฒ ๋ฑ์ฅํฉ๋๋ค.
|
| 67 |
+
|
| 68 |
+
KcBERT๋ ์์ ๊ฐ์ ํน์ฑ์ ๋ฐ์ดํฐ์
์ ์ ์ฉํ๊ธฐ ์ํด, ๋ค์ด๋ฒ ๋ด์ค์์ ๋๊ธ๊ณผ ๋๋๊ธ์ ์์งํด, ํ ํฌ๋์ด์ ์ BERT๋ชจ๋ธ์ ์ฒ์๋ถํฐ ํ์ตํ Pretrained BERT ๋ชจ๋ธ์
๋๋ค.
|
| 69 |
+
|
| 70 |
+
KcBERT๋ Huggingface์ Transformers ๋ผ์ด๋ธ๋ฌ๋ฆฌ๋ฅผ ํตํด ๊ฐํธํ ๋ถ๋ฌ์ ์ฌ์ฉํ ์ ์์ต๋๋ค. (๋ณ๋์ ํ์ผ ๋ค์ด๋ก๋๊ฐ ํ์ํ์ง ์์ต๋๋ค.)
|
| 71 |
+
|
| 72 |
+
## KcBERT Performance
|
| 73 |
+
|
| 74 |
+
- Finetune ์ฝ๋๋ https://github.com/Beomi/KcBERT-finetune ์์ ์ฐพ์๋ณด์ค ์ ์์ต๋๋ค.
|
| 75 |
+
|
| 76 |
+
| | Size<br/>(์ฉ๋) | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) |
|
| 77 |
+
| :-------------------- | :---: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: |
|
| 78 |
+
| KcBERT-Base | 417M | 89.62 | 84.34 | 66.95 | 74.85 | 75.57 | 93.93 | 60.25 / 84.39 |
|
| 79 |
+
| KcBERT-Large | 1.2G | **90.68** | 85.53 | 70.15 | 76.99 | 77.49 | 94.06 | 62.16 / 86.64 |
|
| 80 |
+
| KoBERT | 351M | 89.63 | 86.11 | 80.65 | 79.00 | 79.64 | 93.93 | 52.81 / 80.27 |
|
| 81 |
+
| XLM-Roberta-Base | 1.03G | 89.49 | 86.26 | 82.95 | 79.92 | 79.09 | 93.53 | 64.70 / 88.94 |
|
| 82 |
+
| HanBERT | 614M | 90.16 | **87.31** | 82.40 | **80.89** | 83.33 | 94.19 | 78.74 / 92.02 |
|
| 83 |
+
| KoELECTRA-Base | 423M | **90.21** | 86.87 | 81.90 | 80.85 | 83.21 | 94.20 | 61.10 / 89.59 |
|
| 84 |
+
| KoELECTRA-Base-v2 | 423M | 89.70 | 87.02 | **83.90** | 80.61 | **84.30** | **94.72** | **84.34 / 92.58** |
|
| 85 |
+
| DistilKoBERT | 108M | 88.41 | 84.13 | 62.55 | 70.55 | 73.21 | 92.48 | 54.12 / 77.80 |
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
\*HanBERT์ Size๋ Bert Model๊ณผ Tokenizer DB๋ฅผ ํฉ์น ๊ฒ์
๋๋ค.
|
| 89 |
+
|
| 90 |
+
\***config์ ์ธํ
์ ๊ทธ๋๋ก ํ์ฌ ๋๋ฆฐ ๊ฒฐ๊ณผ์ด๋ฉฐ, hyperparameter tuning์ ์ถ๊ฐ์ ์ผ๋ก ํ ์ ๋ ์ข์ ์ฑ๋ฅ์ด ๋์ฌ ์ ์์ต๋๋ค.**
|
| 91 |
+
|
| 92 |
+
## How to use
|
| 93 |
+
|
| 94 |
+
### Requirements
|
| 95 |
+
|
| 96 |
+
- `pytorch <= 1.8.0`
|
| 97 |
+
- `transformers ~= 3.0.1`
|
| 98 |
+
- `transformers ~= 4.0.0` ๋ ํธํ๋ฉ๋๋ค.
|
| 99 |
+
- `emoji ~= 0.6.0`
|
| 100 |
+
- `soynlp ~= 0.0.493`
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
| 104 |
+
|
| 105 |
+
# Base Model (108M)
|
| 106 |
+
|
| 107 |
+
tokenizer = AutoTokenizer.from_pretrained("beomi/kcbert-base")
|
| 108 |
+
|
| 109 |
+
model = AutoModelWithLMHead.from_pretrained("beomi/kcbert-base")
|
| 110 |
+
|
| 111 |
+
# Large Model (334M)
|
| 112 |
+
|
| 113 |
+
tokenizer = AutoTokenizer.from_pretrained("beomi/kcbert-large")
|
| 114 |
+
|
| 115 |
+
model = AutoModelWithLMHead.from_pretrained("beomi/kcbert-large")
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
### Pretrain & Finetune Colab ๋งํฌ ๋ชจ์
|
| 119 |
+
|
| 120 |
+
#### Pretrain Data
|
| 121 |
+
|
| 122 |
+
- [๋ฐ์ดํฐ์
๋ค์ด๋ก๋(Kaggle, ๋จ์ผํ์ผ, ๋ก๊ทธ์ธ ํ์)](https://www.kaggle.com/junbumlee/kcbert-pretraining-corpus-korean-news-comments)
|
| 123 |
+
- [๋ฐ์ดํฐ์
๋ค์ด๋ก๋(Github, ์์ถ ์ฌ๋ฌํ์ผ, ๋ก๊ทธ์ธ ๋ถํ์)](https://github.com/Beomi/KcBERT/releases/tag/TrainData_v1)
|
| 124 |
+
|
| 125 |
+
#### Pretrain Code
|
| 126 |
+
|
| 127 |
+
Colab์์ TPU๋ก KcBERT Pretrain ํด๋ณด๊ธฐ: <a href="https://colab.research.google.com/drive/1lYBYtaXqt9S733OXdXvrvC09ysKFN30W">
|
| 128 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 129 |
+
</a>
|
| 130 |
+
|
| 131 |
+
#### Finetune Samples
|
| 132 |
+
|
| 133 |
+
**KcBERT-Base** NSMC Finetuning with PyTorch-Lightning (Colab) <a href="https://colab.research.google.com/drive/1fn4sVJ82BrrInjq6y5655CYPP-1UKCLb?usp=sharing">
|
| 134 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 135 |
+
</a>
|
| 136 |
+
|
| 137 |
+
**KcBERT-Large** NSMC Finetuning with PyTorch-Lightning (Colab) <a href="https://colab.research.google.com/drive/1dFC0FL-521m7CL_PSd8RLKq67jgTJVhL?usp=sharing">
|
| 138 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 139 |
+
</a>
|
| 140 |
+
|
| 141 |
+
> ์ ๋ ์ฝ๋๋ Pretrain ๋ชจ๋ธ(base, large)์ batch size๋ง ๋ค๋ฅผ ๋ฟ, ๋๋จธ์ง ์ฝ๋๋ ์์ ํ ๋์ผํฉ๋๋ค.
|
| 142 |
+
|
| 143 |
+
## Train Data & Preprocessing
|
| 144 |
+
|
| 145 |
+
### Raw Data
|
| 146 |
+
|
| 147 |
+
ํ์ต ๋ฐ์ดํฐ๋ 2019.01.01 ~ 2020.06.15 ์ฌ์ด์ ์์ฑ๋ **๋๊ธ ๋ง์ ๋ด์ค** ๊ธฐ์ฌ๋ค์ **๋๊ธ๊ณผ ๋๋๊ธ**์ ๋ชจ๋ ์์งํ ๋ฐ์ดํฐ์
๋๋ค.
|
| 148 |
+
|
| 149 |
+
๋ฐ์ดํฐ ์ฌ์ด์ฆ๋ ํ
์คํธ๋ง ์ถ์ถ์ **์ฝ 15.4GB์ด๋ฉฐ, 1์ต1์ฒ๋ง๊ฐ ์ด์์ ๋ฌธ์ฅ**์ผ๋ก ์ด๋ค์ ธ ์์ต๋๋ค.
|
| 150 |
+
|
| 151 |
+
### Preprocessing
|
| 152 |
+
|
| 153 |
+
PLM ํ์ต์ ์ํด์ ์ ์ฒ๋ฆฌ๋ฅผ ์งํํ ๊ณผ์ ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
|
| 154 |
+
|
| 155 |
+
1. ํ๊ธ ๋ฐ ์์ด, ํน์๋ฌธ์, ๊ทธ๋ฆฌ๊ณ ์ด๋ชจ์ง(๐ฅณ)๊น์ง!
|
| 156 |
+
|
| 157 |
+
์ ๊ทํํ์์ ํตํด ํ๊ธ, ์์ด, ํน์๋ฌธ์๋ฅผ ํฌํจํด Emoji๊น์ง ํ์ต ๋์์ ํฌํจํ์ต๋๋ค.
|
| 158 |
+
|
| 159 |
+
ํํธ, ํ๊ธ ๋ฒ์๋ฅผ `ใฑ-ใ
๊ฐ-ํฃ` ์ผ๋ก ์ง์ ํด `ใฑ-ํฃ` ๋ด์ ํ์๋ฅผ ์ ์ธํ์ต๋๋ค.
|
| 160 |
+
|
| 161 |
+
2. ๋๊ธ ๋ด ์ค๋ณต ๋ฌธ์์ด ์ถ์ฝ
|
| 162 |
+
|
| 163 |
+
`ใ
ใ
ใ
ใ
ใ
`์ ๊ฐ์ด ์ค๋ณต๋ ๊ธ์๋ฅผ `ใ
ใ
`์ ๊ฐ์ ๊ฒ์ผ๋ก ํฉ์ณค์ต๋๋ค.
|
| 164 |
+
|
| 165 |
+
3. Cased Model
|
| 166 |
+
|
| 167 |
+
KcBERT๋ ์๋ฌธ์ ๋ํด์๋ ๋์๋ฌธ์๋ฅผ ์ ์งํ๋ Cased model์
๋๋ค.
|
| 168 |
+
|
| 169 |
+
4. ๊ธ์ ๋จ์ 10๊ธ์ ์ดํ ์ ๊ฑฐ
|
| 170 |
+
|
| 171 |
+
10๊ธ์ ๋ฏธ๋ง์ ํ
์คํธ๋ ๋จ์ผ ๋จ์ด๋ก ์ด๋ค์ง ๊ฒฝ์ฐ๊ฐ ๋ง์ ํด๋น ๋ถ๋ถ์ ์ ์ธํ์ต๋๋ค.
|
| 172 |
+
|
| 173 |
+
5. ์ค๋ณต ์ ๊ฑฐ
|
| 174 |
+
|
| 175 |
+
์ค๋ณต์ ์ผ๋ก ์ฐ์ธ ๋๊ธ์ ์ ๊ฑฐํ๊ธฐ ์ํด ์ค๋ณต ๋๊ธ์ ํ๋๋ก ํฉ์ณค์ต๋๋ค.
|
| 176 |
+
|
| 177 |
+
์ด๋ฅผ ํตํด ๋ง๋ ์ต์ข
ํ์ต ๋ฐ์ดํฐ๋ **12.5GB, 8.9์ฒ๋ง๊ฐ ๋ฌธ์ฅ**์
๋๋ค.
|
| 178 |
+
|
| 179 |
+
์๋ ๋ช
๋ น์ด๋ก pip๋ก ์ค์นํ ๋ค, ์๋ cleanํจ์๋ก ํด๋ฆฌ๋์ ํ๋ฉด Downstream task์์ ๋ณด๋ค ์ฑ๋ฅ์ด ์ข์์ง๋๋ค. (`[UNK]` ๊ฐ์)
|
| 180 |
+
|
| 181 |
+
```bash
|
| 182 |
+
pip install soynlp emoji
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
์๋ `clean` ํจ์๋ฅผ Text data์ ์ฌ์ฉํด์ฃผ์ธ์.
|
| 186 |
+
|
| 187 |
+
```python
|
| 188 |
+
import re
|
| 189 |
+
import emoji
|
| 190 |
+
from soynlp.normalizer import repeat_normalize
|
| 191 |
+
|
| 192 |
+
emojis = list({y for x in emoji.UNICODE_EMOJI.values() for y in x.keys()})
|
| 193 |
+
emojis = ''.join(emojis)
|
| 194 |
+
pattern = re.compile(f'[^ .,?!/@$%~๏ผ
ยทโผ()\x00-\x7Fใฑ-ใ
ฃ๊ฐ-ํฃ{emojis}]+')
|
| 195 |
+
url_pattern = re.compile(
|
| 196 |
+
r'https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)')
|
| 197 |
+
|
| 198 |
+
def clean(x):
|
| 199 |
+
x = pattern.sub(' ', x)
|
| 200 |
+
x = url_pattern.sub('', x)
|
| 201 |
+
x = x.strip()
|
| 202 |
+
x = repeat_normalize(x, num_repeats=2)
|
| 203 |
+
return x
|
| 204 |
+
```
|
| 205 |
+
|
| 206 |
+
### Cleaned Data (Released on Kaggle)
|
| 207 |
+
|
| 208 |
+
์๋ณธ ๋ฐ์ดํฐ๋ฅผ ์ `clean`ํจ์๋ก ์ ์ ํ 12GB๋ถ๋์ txt ํ์ผ์ ์๋ Kaggle Dataset์์ ๋ค์ด๋ฐ์ผ์ค ์ ์์ต๋๋ค :)
|
| 209 |
+
|
| 210 |
+
https://www.kaggle.com/junbumlee/kcbert-pretraining-corpus-korean-news-comments
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
## Tokenizer Train
|
| 214 |
+
|
| 215 |
+
Tokenizer๋ Huggingface์ [Tokenizers](https://github.com/huggingface/tokenizers) ๋ผ์ด๋ธ๋ฌ๋ฆฌ๋ฅผ ํตํด ํ์ต์ ์งํํ์ต๋๋ค.
|
| 216 |
+
|
| 217 |
+
๊ทธ ์ค `BertWordPieceTokenizer` ๋ฅผ ์ด์ฉํด ํ์ต์ ์งํํ๊ณ , Vocab Size๋ `30000`์ผ๋ก ์งํํ์ต๋๋ค.
|
| 218 |
+
|
| 219 |
+
Tokenizer๋ฅผ ํ์ตํ๋ ๊ฒ์๋ `1/10`๋ก ์ํ๋งํ ๋ฐ์ดํฐ๋ก ํ์ต์ ์งํํ๊ณ , ๋ณด๋ค ๊ณจ๊ณ ๋ฃจ ์ํ๋งํ๊ธฐ ์ํด ์ผ์๋ณ๋ก stratify๋ฅผ ์ง์ ํ ๋ค ํ์ต์ ์งํํ์ต๋๋ค.
|
| 220 |
+
|
| 221 |
+
## BERT Model Pretrain
|
| 222 |
+
|
| 223 |
+
- KcBERT Base config
|
| 224 |
+
|
| 225 |
+
```json
|
| 226 |
+
{
|
| 227 |
+
"max_position_embeddings": 300,
|
| 228 |
+
"hidden_dropout_prob": 0.1,
|
| 229 |
+
"hidden_act": "gelu",
|
| 230 |
+
"initializer_range": 0.02,
|
| 231 |
+
"num_hidden_layers": 12,
|
| 232 |
+
"type_vocab_size": 2,
|
| 233 |
+
"vocab_size": 30000,
|
| 234 |
+
"hidden_size": 768,
|
| 235 |
+
"attention_probs_dropout_prob": 0.1,
|
| 236 |
+
"directionality": "bidi",
|
| 237 |
+
"num_attention_heads": 12,
|
| 238 |
+
"intermediate_size": 3072,
|
| 239 |
+
"architectures": [
|
| 240 |
+
"BertForMaskedLM"
|
| 241 |
+
],
|
| 242 |
+
"model_type": "bert"
|
| 243 |
+
}
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
- KcBERT Large config
|
| 247 |
+
|
| 248 |
+
```json
|
| 249 |
+
{
|
| 250 |
+
"type_vocab_size": 2,
|
| 251 |
+
"initializer_range": 0.02,
|
| 252 |
+
"max_position_embeddings": 300,
|
| 253 |
+
"vocab_size": 30000,
|
| 254 |
+
"hidden_size": 1024,
|
| 255 |
+
"hidden_dropout_prob": 0.1,
|
| 256 |
+
"model_type": "bert",
|
| 257 |
+
"directionality": "bidi",
|
| 258 |
+
"pad_token_id": 0,
|
| 259 |
+
"layer_norm_eps": 1e-12,
|
| 260 |
+
"hidden_act": "gelu",
|
| 261 |
+
"num_hidden_layers": 24,
|
| 262 |
+
"num_attention_heads": 16,
|
| 263 |
+
"attention_probs_dropout_prob": 0.1,
|
| 264 |
+
"intermediate_size": 4096,
|
| 265 |
+
"architectures": [
|
| 266 |
+
"BertForMaskedLM"
|
| 267 |
+
]
|
| 268 |
+
}
|
| 269 |
+
```
|
| 270 |
+
|
| 271 |
+
BERT Model Config๋ Base, Large ๊ธฐ๋ณธ ์ธํ
๊ฐ์ ๊ทธ๋๋ก ์ฌ์ฉํ์ต๋๋ค. (MLM 15% ๋ฑ)
|
| 272 |
+
|
| 273 |
+
TPU `v3-8` ์ ์ด์ฉํด ๊ฐ๊ฐ 3์ผ, N์ผ(Large๋ ํ์ต ์งํ ์ค)์ ์งํํ๊ณ , ํ์ฌ Huggingface์ ๊ณต๊ฐ๋ ๋ชจ๋ธ์ 1m(100๋ง) step์ ํ์ตํ ckpt๊ฐ ์
๋ก๋ ๋์ด์์ต๋๋ค.
|
| 274 |
+
|
| 275 |
+
๋ชจ๋ธ ํ์ต Loss๋ Step์ ๋ฐ๋ผ ์ด๊ธฐ 200k์ ๊ฐ์ฅ ๋น ๋ฅด๊ฒ Loss๊ฐ ์ค์ด๋ค๋ค 400k์ดํ๋ก๋ ์กฐ๊ธ์ฉ ๊ฐ์ํ๋ ๊ฒ์ ๋ณผ ์ ์์ต๋๋ค.
|
| 276 |
+
|
| 277 |
+
- Base Model Loss
|
| 278 |
+
|
| 279 |
+

|
| 280 |
+
|
| 281 |
+
- Large Model Loss
|
| 282 |
+
|
| 283 |
+

|
| 284 |
+
|
| 285 |
+
ํ์ต์ GCP์ TPU v3-8์ ์ด์ฉํด ํ์ต์ ์งํํ๊ณ , ํ์ต ์๊ฐ์ Base Model ๊ธฐ์ค 2.5์ผ์ ๋ ์งํํ์ต๋๋ค. Large Model์ ์ฝ 5์ผ์ ๋ ์งํํ ๋ค ๊ฐ์ฅ ๋ฎ์ loss๋ฅผ ๊ฐ์ง ์ฒดํฌํฌ์ธํธ๋ก ์ ํ์ต๋๋ค.
|
| 286 |
+
|
| 287 |
+
## Example
|
| 288 |
+
|
| 289 |
+
### HuggingFace MASK LM
|
| 290 |
+
|
| 291 |
+
[HuggingFace kcbert-base ๋ชจ๋ธ](https://huggingface.co/beomi/kcbert-base?text=์ค๋์+๋ ์จ๊ฐ+[MASK]) ์์ ์๋์ ๊ฐ์ด ํ
์คํธ ํด ๋ณผ ์ ์์ต๋๋ค.
|
| 292 |
+
|
| 293 |
+

|
| 294 |
+
|
| 295 |
+
๋ฌผ๋ก [kcbert-large ๋ชจ๋ธ](https://huggingface.co/beomi/kcbert-large?text=์ค๋์+๋ ์จ๊ฐ+[MASK]) ์์๋ ํ
์คํธ ํ ์ ์์ต๋๋ค.
|
| 296 |
+
|
| 297 |
+

|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
### NSMC Binary Classification
|
| 302 |
+
|
| 303 |
+
[๋ค์ด๋ฒ ์ํํ ์ฝํผ์ค](https://github.com/e9t/nsmc) ๋ฐ์ดํฐ์
์ ๋์์ผ๋ก Fine Tuning์ ์งํํด ์ฑ๋ฅ์ ๊ฐ๋จํ ํ
์คํธํด๋ณด์์ต๋๋ค.
|
| 304 |
+
|
| 305 |
+
Base Model์ Fine Tuneํ๋ ์ฝ๋๋ <a href="https://colab.research.google.com/drive/1fn4sVJ82BrrInjq6y5655CYPP-1UKCLb?usp=sharing">
|
| 306 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 307 |
+
</a> ์์ ์ง์ ์คํํด๋ณด์ค ์ ์์ต๋๋ค.
|
| 308 |
+
|
| 309 |
+
Large Model์ Fine Tuneํ๋ ์ฝ๋๋ <a href="https://colab.research.google.com/drive/1dFC0FL-521m7CL_PSd8RLKq67jgTJVhL?usp=sharing">
|
| 310 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 311 |
+
</a> ์์ ์ง์ ์คํํด๋ณผ ์ ์์ต๋๋ค.
|
| 312 |
+
|
| 313 |
+
- GPU๋ P100 x1๋ ๊ธฐ์ค 1epoch์ 2-3์๊ฐ, TPU๋ 1epoch์ 1์๊ฐ ๋ด๋ก ์์๋ฉ๋๋ค.
|
| 314 |
+
- GPU RTX Titan x4๋ ๊ธฐ์ค 30๋ถ/epoch ์์๋ฉ๋๋ค.
|
| 315 |
+
- ์์ ์ฝ๋๋ [pytorch-lightning](https://github.com/PyTorchLightning/pytorch-lightning)์ผ๋ก ๊ฐ๋ฐํ์ต๋๋ค.
|
| 316 |
+
|
| 317 |
+
#### ์คํ๊ฒฐ๊ณผ
|
| 318 |
+
|
| 319 |
+
- KcBERT-Base Model ์คํ๊ฒฐ๊ณผ: Val acc `.8905`
|
| 320 |
+
|
| 321 |
+

|
| 322 |
+
|
| 323 |
+
- KcBERT-Large Model ์คํ ๊ฒฐ๊ณผ: Val acc `.9089`
|
| 324 |
+
|
| 325 |
+

|
| 326 |
+
|
| 327 |
+
> ๋ ๋ค์ํ Downstream Task์ ๋ํด ํ
์คํธ๋ฅผ ์งํํ๊ณ ๊ณต๊ฐํ ์์ ์
๋๋ค.
|
| 328 |
+
|
| 329 |
+
## ์ธ์ฉํ๊ธฐ/Citation
|
| 330 |
+
|
| 331 |
+
KcBERT๋ฅผ ์ธ์ฉํ์ค ๋๋ ์๋ ์์์ ํตํด ์ธ์ฉํด์ฃผ์ธ์.
|
| 332 |
+
|
| 333 |
+
```
|
| 334 |
+
@inproceedings{lee2020kcbert,
|
| 335 |
+
title={KcBERT: Korean Comments BERT},
|
| 336 |
+
author={Lee, Junbum},
|
| 337 |
+
booktitle={Proceedings of the 32nd Annual Conference on Human and Cognitive Language Technology},
|
| 338 |
+
pages={437--440},
|
| 339 |
+
year={2020}
|
| 340 |
+
}
|
| 341 |
+
```
|
| 342 |
+
|
| 343 |
+
- ๋
ผ๋ฌธ์ง ๋ค์ด๋ก๋ ๋งํฌ: http://hclt.kr/dwn/?v=bG5iOmNvbmZlcmVuY2U7aWR4OjMy (*ํน์ http://hclt.kr/symp/?lnb=conference )
|
| 344 |
+
|
| 345 |
+
## Acknowledgement
|
| 346 |
+
|
| 347 |
+
KcBERT Model์ ํ์ตํ๋ GCP/TPU ํ๊ฒฝ์ [TFRC](https://www.tensorflow.org/tfrc?hl=ko) ํ๋ก๊ทธ๋จ์ ์ง์์ ๋ฐ์์ต๋๋ค.
|
| 348 |
+
|
| 349 |
+
๋ชจ๋ธ ํ์ต ๊ณผ์ ์์ ๋ง์ ์กฐ์ธ์ ์ฃผ์ [Monologg](https://github.com/monologg/) ๋ ๊ฐ์ฌํฉ๋๋ค :)
|
| 350 |
+
|
| 351 |
+
## Reference
|
| 352 |
+
|
| 353 |
+
### Github Repos
|
| 354 |
+
|
| 355 |
+
- [BERT by Google](https://github.com/google-research/bert)
|
| 356 |
+
- [KoBERT by SKT](https://github.com/SKTBrain/KoBERT)
|
| 357 |
+
- [KoELECTRA by Monologg](https://github.com/monologg/KoELECTRA/)
|
| 358 |
+
|
| 359 |
+
- [Transformers by Huggingface](https://github.com/huggingface/transformers)
|
| 360 |
+
- [Tokenizers by Hugginface](https://github.com/huggingface/tokenizers)
|
| 361 |
+
|
| 362 |
+
### Papers
|
| 363 |
+
|
| 364 |
+
- [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)
|
| 365 |
+
|
| 366 |
+
### Blogs
|
| 367 |
+
|
| 368 |
+
- [Monologg๋์ KoELECTRA ํ์ต๊ธฐ](https://monologg.kr/categories/NLP/ELECTRA/)
|
| 369 |
+
- [Colab์์ TPU๋ก BERT ์ฒ์๋ถํฐ ํ์ต์ํค๊ธฐ - Tensorflow/Google ver.](https://beomi.github.io/2020/02/26/Train-BERT-from-scratch-on-colab-TPU-Tensorflow-ver/)
|
| 370 |
+
|