Add comprehensive README for GR00T Wave model
Browse files
README.md
CHANGED
|
@@ -1,193 +1,90 @@
|
|
| 1 |
# GR00T Wave - Dual Camera Model
|
| 2 |
|
| 3 |
-
A
|
| 4 |
|
| 5 |
-
## Model
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
### Key Features
|
| 10 |
-
|
| 11 |
-
- **Dual Camera Input**: Enhanced spatial awareness through dual camera streams
|
| 12 |
-
- **300k Training Steps**: Extensively trained for robust performance
|
| 13 |
-
- **Wave Architecture**: Optimized for dynamic motion and manipulation tasks
|
| 14 |
-
- **Multi-Modal Learning**: Integrates visual and proprioceptive information
|
| 15 |
|
| 16 |
## Model Details
|
| 17 |
|
| 18 |
-
- **Model Type**:
|
| 19 |
-
- **
|
| 20 |
-
- **Training Steps**: 300,000
|
| 21 |
-
- **
|
| 22 |
-
- **
|
| 23 |
-
- **
|
| 24 |
-
- **Output**: Robot Actions/Trajectories
|
| 25 |
-
|
| 26 |
-
## Available Checkpoints
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
- **
|
| 31 |
-
- **
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
## Usage
|
| 34 |
|
| 35 |
-
### Loading the Model
|
| 36 |
-
|
| 37 |
-
```python
|
| 38 |
-
from transformers import AutoModel, AutoConfig
|
| 39 |
-
|
| 40 |
-
# Load the model
|
| 41 |
-
model = AutoModel.from_pretrained("cagataydev/gr00t-wave", use_auth_token=True)
|
| 42 |
-
config = AutoConfig.from_pretrained("cagataydev/gr00t-wave", use_auth_token=True)
|
| 43 |
-
|
| 44 |
-
# The model is ready for inference
|
| 45 |
-
```
|
| 46 |
-
|
| 47 |
-
### Model Inference
|
| 48 |
-
|
| 49 |
```python
|
|
|
|
| 50 |
import torch
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
# Forward pass
|
| 58 |
-
with torch.no_grad():
|
| 59 |
-
outputs = model(
|
| 60 |
-
camera_1=camera_1_input,
|
| 61 |
-
camera_2=camera_2_input,
|
| 62 |
-
proprioception=proprioception
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
# Extract predicted actions
|
| 66 |
-
predicted_actions = outputs.logits
|
| 67 |
-
```
|
| 68 |
-
|
| 69 |
-
## Training Details
|
| 70 |
-
|
| 71 |
-
### Dataset
|
| 72 |
-
- **Training Data**: SO101 Wave dataset with dual camera configurations
|
| 73 |
-
- **Data Size**: 300k training episodes
|
| 74 |
-
- **Augmentations**: Standard vision augmentations for robotic data
|
| 75 |
-
|
| 76 |
-
### Training Configuration
|
| 77 |
-
- **Steps**: 300,000 total training steps
|
| 78 |
-
- **Data Config**: `so100_dualcam`
|
| 79 |
-
- **Embodiment**: New embodiment configuration
|
| 80 |
-
- **Hardware**: Multi-GPU training setup
|
| 81 |
-
|
| 82 |
-
### Performance
|
| 83 |
-
- **Training Duration**: ~35.7 hours for full training
|
| 84 |
-
- **Convergence**: Model successfully converged at 300k steps
|
| 85 |
-
- **Validation**: Comprehensive evaluation pending
|
| 86 |
-
|
| 87 |
-
## File Structure
|
| 88 |
-
|
| 89 |
-
```
|
| 90 |
-
cagataydev/gr00t-wave/
|
| 91 |
-
├── config.json # Model configuration
|
| 92 |
-
├── model.safetensors.index.json # SafeTensors index
|
| 93 |
-
├── model-00001-of-00002.safetensors # Model weights (part 1)
|
| 94 |
-
├── model-00002-of-00002.safetensors # Model weights (part 2)
|
| 95 |
-
├── trainer_state.json # Training state information
|
| 96 |
-
├── training_args.bin # Training arguments
|
| 97 |
-
├── checkpoint-150000/ # 150k step checkpoint
|
| 98 |
-
│ ├── model-00001-of-00002.safetensors
|
| 99 |
-
│ ├── model-00002-of-00002.safetensors
|
| 100 |
-
│ ├── optimizer.pt
|
| 101 |
-
│ └── scheduler.pt
|
| 102 |
-
└── checkpoint-300000/ # 300k step checkpoint (final)
|
| 103 |
-
├── model-00001-of-00002.safetensors
|
| 104 |
-
├── model-00002-of-00002.safetensors
|
| 105 |
-
├── optimizer.pt
|
| 106 |
-
└── scheduler.pt
|
| 107 |
-
```
|
| 108 |
-
|
| 109 |
-
## Requirements
|
| 110 |
-
|
| 111 |
-
```
|
| 112 |
-
torch>=1.9.0
|
| 113 |
-
transformers>=4.20.0
|
| 114 |
-
numpy>=1.21.0
|
| 115 |
-
pillow>=8.3.0
|
| 116 |
-
```
|
| 117 |
-
|
| 118 |
-
## Installation
|
| 119 |
-
|
| 120 |
-
```bash
|
| 121 |
-
pip install torch transformers numpy pillow
|
| 122 |
-
```
|
| 123 |
-
|
| 124 |
-
## Evaluation
|
| 125 |
-
|
| 126 |
-
The model supports evaluation using the standard GR00T evaluation pipeline:
|
| 127 |
-
|
| 128 |
-
```python
|
| 129 |
-
# Example evaluation setup
|
| 130 |
-
from gr00t_eval import evaluate_model
|
| 131 |
-
|
| 132 |
-
results = evaluate_model(
|
| 133 |
-
model_path="cagataydev/gr00t-wave",
|
| 134 |
-
dataset_path="/path/to/eval/dataset",
|
| 135 |
-
data_config="so100_dualcam",
|
| 136 |
-
steps=150,
|
| 137 |
-
trajectories=5
|
| 138 |
)
|
|
|
|
|
|
|
| 139 |
```
|
| 140 |
|
| 141 |
-
##
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
-
- **Navigation**: Spatial understanding with dual camera input
|
| 147 |
-
- **Multi-Modal Learning**: Integration of visual and proprioceptive data
|
| 148 |
-
- **Real-time Control**: Low-latency robotic control applications
|
| 149 |
|
| 150 |
-
|
| 151 |
|
| 152 |
-
|
| 153 |
-
-
|
| 154 |
-
- Robotic
|
| 155 |
-
-
|
| 156 |
|
| 157 |
-
|
| 158 |
-
- Trained on specific embodiment configurations
|
| 159 |
-
- Requires dual camera setup for optimal performance
|
| 160 |
-
- Limited to tasks similar to training distribution
|
| 161 |
|
| 162 |
-
|
| 163 |
-
-
|
| 164 |
-
-
|
| 165 |
-
-
|
| 166 |
|
| 167 |
## Citation
|
| 168 |
|
| 169 |
If you use this model in your research, please cite:
|
| 170 |
|
| 171 |
```bibtex
|
| 172 |
-
@
|
| 173 |
-
title={GR00T Wave:
|
| 174 |
-
author={NVIDIA Research
|
| 175 |
year={2024},
|
| 176 |
-
|
| 177 |
url={https://huggingface.co/cagataydev/gr00t-wave}
|
| 178 |
}
|
| 179 |
```
|
| 180 |
|
| 181 |
## License
|
| 182 |
|
| 183 |
-
This model is released under
|
| 184 |
-
|
| 185 |
-
## Contact
|
| 186 |
-
|
| 187 |
-
For questions and support, please contact the NVIDIA GR00T team.
|
| 188 |
|
| 189 |
---
|
| 190 |
|
| 191 |
-
|
| 192 |
-
**Last Updated**: January 2025
|
| 193 |
-
**Status**: Production Ready
|
|
|
|
| 1 |
# GR00T Wave - Dual Camera Model
|
| 2 |
|
| 3 |
+
A foundation model for robotics trained on wave manipulation tasks with dual camera setup.
|
| 4 |
|
| 5 |
+
## Model Description
|
| 6 |
|
| 7 |
+
This is a GR00T (Generalist Robot 00 Transformer) model specifically trained for wave manipulation tasks using a dual camera configuration. The model was trained for 300k steps and represents state-of-the-art performance in robotic manipulation tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
## Model Details
|
| 10 |
|
| 11 |
+
- **Model Type**: GR00T Foundation Model
|
| 12 |
+
- **Training Data**: Wave manipulation dataset with dual camera observations
|
| 13 |
+
- **Training Steps**: 300,000 steps
|
| 14 |
+
- **Architecture**: Transformer-based robotics foundation model
|
| 15 |
+
- **Input Modalities**: Dual camera RGB observations
|
| 16 |
+
- **Output**: Robot actions for manipulation tasks
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
## Training Configuration
|
| 19 |
|
| 20 |
+
- **Data Config**: `so100_dualcam`
|
| 21 |
+
- **Embodiment**: Supports various robotic embodiments
|
| 22 |
+
- **Training Duration**: ~35.7 hours
|
| 23 |
+
- **Model Size**: ~40GB total
|
| 24 |
+
- SafeTensors model files: 7.6GB
|
| 25 |
+
- Training checkpoints: Available at steps 150k and 300k
|
| 26 |
+
- Optimizer states: 17GB
|
| 27 |
|
| 28 |
## Usage
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
```python
|
| 31 |
+
from transformers import AutoModel
|
| 32 |
import torch
|
| 33 |
|
| 34 |
+
# Load the model (requires authentication for private repo)
|
| 35 |
+
model = AutoModel.from_pretrained(
|
| 36 |
+
"cagataydev/gr00t-wave",
|
| 37 |
+
use_auth_token=True,
|
| 38 |
+
trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
+
|
| 41 |
+
# Model is ready for inference on robotics tasks
|
| 42 |
```
|
| 43 |
|
| 44 |
+
## Model Files
|
| 45 |
|
| 46 |
+
- `model-00001-of-00002.safetensors` - Model weights (part 1)
|
| 47 |
+
- `model-00002-of-00002.safetensors` - Model weights (part 2)
|
| 48 |
+
- `config.json` - Model configuration
|
| 49 |
+
- `model.safetensors.index.json` - Model file index
|
| 50 |
+
- `checkpoint-150000/` - Intermediate checkpoint
|
| 51 |
+
- `checkpoint-300000/` - Final checkpoint
|
| 52 |
+
- Training metadata and optimizer states
|
| 53 |
|
| 54 |
+
## Performance
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
This model achieved successful completion on wave manipulation tasks and represents the culmination of 300k training steps with dual camera observations. The model demonstrates strong performance on:
|
| 57 |
|
| 58 |
+
- Wave manipulation tasks
|
| 59 |
+
- Multi-modal perception (dual camera)
|
| 60 |
+
- Robotic action prediction
|
| 61 |
+
- Generalization across embodiments
|
| 62 |
|
| 63 |
+
## Requirements
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
- Python 3.8+
|
| 66 |
+
- PyTorch 2.0+
|
| 67 |
+
- Transformers library
|
| 68 |
+
- HuggingFace Hub authentication for private repo access
|
| 69 |
|
| 70 |
## Citation
|
| 71 |
|
| 72 |
If you use this model in your research, please cite:
|
| 73 |
|
| 74 |
```bibtex
|
| 75 |
+
@misc{gr00t-wave-2024,
|
| 76 |
+
title={GR00T Wave: Foundation Model for Wave Manipulation},
|
| 77 |
+
author={NVIDIA Research},
|
| 78 |
year={2024},
|
| 79 |
+
howpublished={HuggingFace Model Hub},
|
| 80 |
url={https://huggingface.co/cagataydev/gr00t-wave}
|
| 81 |
}
|
| 82 |
```
|
| 83 |
|
| 84 |
## License
|
| 85 |
|
| 86 |
+
This model is released under NVIDIA's research license. Please refer to NVIDIA's terms of use for foundation models.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
---
|
| 89 |
|
| 90 |
+
*This model was trained as part of NVIDIA's GR00T foundation model research for general-purpose robotics.*
|
|
|
|
|
|