initial commit
Browse files- README.md +117 -3
- amplify.py +238 -0
- config.json +37 -0
- model.safetensors +3 -0
- rmsnorm.py +34 -0
- rotary.py +80 -0
- special_tokens_map.json +7 -0
- tokenizer.json +154 -0
- tokenizer_config.json +58 -0
README.md
CHANGED
|
@@ -1,3 +1,117 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- drug-discovery/UR100P
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- biology
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
## AMPLIFY
|
| 12 |
+
|
| 13 |
+
AMPLIFY is an efficient, state-of-the-art protein language model pre-trained using masked language modeling on UniRef100, OAS, and SCOP ([UR100P](https://huggingface.co/datasets/drug-discovery/UR100P)). AMPLIFY can generate residue and protein embeddings, suggest mutations, differentiate disordered proteins from non-protein sequences, and much more. AMPLIFY is available in two sizes, 120M and 350M parameters, with the `_base` models not extended beyond 512 residues (Stage 1). The model architecture and pre-training procedure are detailed below. For more details, please refer to the [accompanying paper](https://www.biorxiv.org/content/10.1101/2024.09.23.614603v1).
|
| 14 |
+
|
| 15 |
+
- [`AMPLIFY_350M`](https://huggingface.co/drug-discovery/AMPLIFY_350M)
|
| 16 |
+
- [`AMPLIFY_350M_base`](https://huggingface.co/drug-discovery/AMPLIFY_350M_base)
|
| 17 |
+
- [`AMPLIFY_120M`](https://huggingface.co/drug-discovery/AMPLIFY_120M)
|
| 18 |
+
- [`AMPLIFY_120M_base`](https://huggingface.co/drug-discovery/AMPLIFY_120M_base)
|
| 19 |
+
|
| 20 |
+
### Model Descritpion
|
| 21 |
+
|
| 22 |
+
| | AMPLIFY 120M | AMPLIFY 350M |
|
| 23 |
+
| :----------------------------- | -----------: | -----------: |
|
| 24 |
+
| `hidden-size` | 640 | 960 |
|
| 25 |
+
| `num-hidden-layers` | 24 | 32 |
|
| 26 |
+
| `num-attention-heads` | 10 | 15 |
|
| 27 |
+
| `intermediate-size` | 2560 | 3840 |
|
| 28 |
+
| `max-position-embeddings` | 2048 | 2048 |
|
| 29 |
+
| `vocab-size` | 27 | 27 |
|
| 30 |
+
| `rope-theta` | 10000 | 10000 |
|
| 31 |
+
| `dropout-prob` | 0 | 0 |
|
| 32 |
+
| `embedding-init-range` | 0.02 | 0.02 |
|
| 33 |
+
| `norm-eps` | 1.0e-05 | 1.0e-05 |
|
| 34 |
+
| `hidden-act` | swiglu | swiglu |
|
| 35 |
+
| `pre-activation-layer-norm` | true | true |
|
| 36 |
+
| `layer-norm-after-embedding` | false | false |
|
| 37 |
+
| `layer-norm-before-last-layer` | true | true |
|
| 38 |
+
| `rms-norm` | true | true |
|
| 39 |
+
| `ffn-bias` | false | false |
|
| 40 |
+
| `attn-bias` | false | false |
|
| 41 |
+
|
| 42 |
+
### Training Descritpion
|
| 43 |
+
|
| 44 |
+
| | Stage 1 | Stage 2 |
|
| 45 |
+
| :------------------ | ----------: | ---------------------------: |
|
| 46 |
+
| `dataset` | UR100P | UR100P |
|
| 47 |
+
| `max-steps` | 1000000 | 25000 (120M) or 50000 (350M) |
|
| 48 |
+
| `max-length` | 512 | 2048 |
|
| 49 |
+
| `optimizer` | adamw | adamw |
|
| 50 |
+
| `lr` | 0.001 | 0.001 |
|
| 51 |
+
| `betas` | (0.9, 0.95) | (0.9, 0.95) |
|
| 52 |
+
| `eps` | 1.0e-08 | 1.0e-08 |
|
| 53 |
+
| `weight-decay` | 0.01 | 0.01 |
|
| 54 |
+
| `scheduler` | cosinedecay | none |
|
| 55 |
+
| `warmup-steps` | 1,000 | none |
|
| 56 |
+
| `final-step` | 900,000 | none |
|
| 57 |
+
| `warmup-steps` | 1,000 | none |
|
| 58 |
+
| `gradient-clipping` | 1.0 | 1.0 |
|
| 59 |
+
| `tf32` | true | true |
|
| 60 |
+
| `mixed-precision` | bf16 | bf16 |
|
| 61 |
+
| `padding` | max-length | max-length |
|
| 62 |
+
| `random-truncate` | true | true |
|
| 63 |
+
| `mask-probability` | 0.15 | 0.15 |
|
| 64 |
+
| `total-batch-size` | 4096 | 4096 |
|
| 65 |
+
| `deepspeed` | true | true |
|
| 66 |
+
| `zero-stage` | 3 | 3 |
|
| 67 |
+
|
| 68 |
+
## Get Started
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from transformers import AutoModel
|
| 72 |
+
from transformers import AutoTokenizer
|
| 73 |
+
from datasets import load_dataset
|
| 74 |
+
|
| 75 |
+
# Load AMPLIFY and tokenizer
|
| 76 |
+
model = AutoModel.from_pretrained("drug-discovery/AMPLIFY_350M", trust_remote_code=True)
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained("drug-discovery/AMPLIFY_350M", trust_remote_code=True)
|
| 78 |
+
|
| 79 |
+
# Move the model to GPU (required due to Flash Attention)
|
| 80 |
+
model = model.to("cuda")
|
| 81 |
+
|
| 82 |
+
# Load the UniProt validation set
|
| 83 |
+
dataset = load_dataset("drug-discovery/UR100P", data_dir="UniProt", split="test")
|
| 84 |
+
|
| 85 |
+
for sample in dataset:
|
| 86 |
+
# Protein
|
| 87 |
+
print("Sample: ", sample["name"], sample["sequence"])
|
| 88 |
+
|
| 89 |
+
# Tokenize the protein
|
| 90 |
+
input = tokenizer.encode(sample["sequence"], return_tensors="pt")
|
| 91 |
+
print("Input: ", input)
|
| 92 |
+
|
| 93 |
+
# Move to the GPU and make a prediction
|
| 94 |
+
input = input.to("cuda")
|
| 95 |
+
output = model(input)
|
| 96 |
+
print("Output: ", output)
|
| 97 |
+
|
| 98 |
+
break
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## Citations
|
| 102 |
+
|
| 103 |
+
If you find the models useful in your research, we ask that you cite the paper:
|
| 104 |
+
|
| 105 |
+
```bibtex
|
| 106 |
+
@article{Fournier2024.09.23.614603,
|
| 107 |
+
title = {Protein Language Models: Is Scaling Necessary?},
|
| 108 |
+
author = {Fournier, Quentin and Vernon, Robert M. and van der Sloot, Almer and Schulz, Benjamin and Chandar, Sarath and Langmead, Christopher James},
|
| 109 |
+
year = {2024},
|
| 110 |
+
journal = {bioRxiv},
|
| 111 |
+
publisher = {Cold Spring Harbor Laboratory},
|
| 112 |
+
doi = {10.1101/2024.09.23.614603},
|
| 113 |
+
url = {https://www.biorxiv.org/content/early/2024/09/23/2024.09.23.614603},
|
| 114 |
+
elocation-id = {2024.09.23.614603},
|
| 115 |
+
eprint = {https://www.biorxiv.org/content/early/2024/09/23/2024.09.23.614603.full.pdf}
|
| 116 |
+
}
|
| 117 |
+
```
|
amplify.py
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# From https://stackoverflow.com/a/23689767
|
| 2 |
+
# From https://github.com/pytorch/pytorch/issues/97899
|
| 3 |
+
# From https://github.com/facebookresearch/llama/blob/main/llama/model.py
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
|
| 8 |
+
from xformers.ops import SwiGLU, memory_efficient_attention
|
| 9 |
+
|
| 10 |
+
from .rmsnorm import RMSNorm
|
| 11 |
+
from .rotary import precompute_freqs_cis, apply_rotary_emb
|
| 12 |
+
|
| 13 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 14 |
+
from transformers.modeling_outputs import MaskedLMOutput
|
| 15 |
+
|
| 16 |
+
class DotDict(dict):
|
| 17 |
+
"""Dictionary that supports the dot notation to access attributes (similarly to HuggingFace)."""
|
| 18 |
+
|
| 19 |
+
__getattr__ = dict.get
|
| 20 |
+
__setattr__ = dict.__setitem__
|
| 21 |
+
__delattr__ = dict.__delitem__
|
| 22 |
+
|
| 23 |
+
class AMPLIFYConfig(PretrainedConfig):
|
| 24 |
+
model_type = "AMPLIFY"
|
| 25 |
+
# All config parameters must have a default value.
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
hidden_size: int = 960,
|
| 29 |
+
num_hidden_layers: int = 32,
|
| 30 |
+
num_attention_heads: int = 15,
|
| 31 |
+
intermediate_size: int = 3840,
|
| 32 |
+
dropout_prob: float = 0,
|
| 33 |
+
embedding_init_range: float = 0.02,
|
| 34 |
+
decoder_init_range: float = 0.02,
|
| 35 |
+
rms_norm: bool = True,
|
| 36 |
+
norm_eps: float = 1e-05,
|
| 37 |
+
hidden_act: str = "SwiGLU",
|
| 38 |
+
layer_norm_after_embedding: bool = False,
|
| 39 |
+
layer_norm_before_last_layer: bool = True,
|
| 40 |
+
vocab_size: int = 27,
|
| 41 |
+
ffn_bias: bool = False,
|
| 42 |
+
att_bias: bool = False,
|
| 43 |
+
pad_token_id: int = 0,
|
| 44 |
+
max_length: int = 2048,
|
| 45 |
+
**kwargs,
|
| 46 |
+
):
|
| 47 |
+
super().__init__(**kwargs)
|
| 48 |
+
|
| 49 |
+
self.hidden_size = hidden_size
|
| 50 |
+
self.num_hidden_layers = num_hidden_layers
|
| 51 |
+
self.num_attention_heads = num_attention_heads
|
| 52 |
+
self.intermediate_size = intermediate_size
|
| 53 |
+
self.dropout_prob = dropout_prob
|
| 54 |
+
self.embedding_init_range = embedding_init_range
|
| 55 |
+
self.decoder_init_range = decoder_init_range
|
| 56 |
+
self.rms_norm = rms_norm
|
| 57 |
+
self.norm_eps = norm_eps
|
| 58 |
+
self.hidden_act = hidden_act
|
| 59 |
+
self.layer_norm_after_embedding = layer_norm_after_embedding
|
| 60 |
+
self.layer_norm_before_last_layer = layer_norm_before_last_layer
|
| 61 |
+
self.vocab_size = vocab_size
|
| 62 |
+
self.ffn_bias = ffn_bias
|
| 63 |
+
self.att_bias = att_bias
|
| 64 |
+
self.pad_token_id = pad_token_id
|
| 65 |
+
self.max_length = max_length
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class EncoderBlock(nn.Module):
|
| 69 |
+
"""Transformer encoder block."""
|
| 70 |
+
|
| 71 |
+
def __init__(self, config: AMPLIFYConfig):
|
| 72 |
+
"""Initialize a EncoderBlock.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
hidden_size (int): _description_
|
| 76 |
+
num_attention_heads (int): _description_
|
| 77 |
+
intermediate_size (int, optional): _description_. Defaults to 2048.
|
| 78 |
+
dropout_prob (float, optional): _description_. Defaults to 0.1.
|
| 79 |
+
activation (str, optional): _description_. Defaults to "relu".
|
| 80 |
+
rms_norm (bool, optional): _description_. Defaults to True.
|
| 81 |
+
norm_eps (float, optional): _description_. Defaults to 1e-5.
|
| 82 |
+
pad_token_id (int, optional): _description_. Defaults to 0.
|
| 83 |
+
max_length (int, optional): _description_. Defaults to 2048.
|
| 84 |
+
ffn_bias (bool, optional): _description_. Defaults to False.
|
| 85 |
+
att_bias (bool, optional): _description_. Defaults to False.
|
| 86 |
+
"""
|
| 87 |
+
super().__init__()
|
| 88 |
+
|
| 89 |
+
self.config = config
|
| 90 |
+
self.d_head = config.hidden_size // config.num_attention_heads
|
| 91 |
+
|
| 92 |
+
# Attention
|
| 93 |
+
self.q = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
|
| 94 |
+
self.k = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
|
| 95 |
+
self.v = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
|
| 96 |
+
self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
|
| 97 |
+
self.resid_dropout = nn.Dropout(config.dropout_prob)
|
| 98 |
+
|
| 99 |
+
# Feedforward network
|
| 100 |
+
match config.hidden_act.lower():
|
| 101 |
+
case "swiglu":
|
| 102 |
+
# To keep the number of parameters and the amount of computation constant, we reduce the number of
|
| 103 |
+
# hidden units by a factor of 2/3 (https://arxiv.org/pdf/2002.05202.pdf) and make it a multiple of 8 to
|
| 104 |
+
# avoid RuntimeError due to misaligned operand
|
| 105 |
+
multiple_of = 8
|
| 106 |
+
intermediate_size = int(2 * config.intermediate_size / 3)
|
| 107 |
+
intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
|
| 108 |
+
self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=config.ffn_bias)
|
| 109 |
+
case "relu":
|
| 110 |
+
self.ffn = nn.Sequential(
|
| 111 |
+
nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias),
|
| 112 |
+
nn.ReLU(),
|
| 113 |
+
nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias),
|
| 114 |
+
)
|
| 115 |
+
case "gelu":
|
| 116 |
+
self.ffn = nn.Sequential(
|
| 117 |
+
nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias),
|
| 118 |
+
nn.GELU(),
|
| 119 |
+
nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias),
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
self.attention_norm = RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
|
| 123 |
+
self.ffn_norm = RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
|
| 124 |
+
|
| 125 |
+
self.ffn_dropout = nn.Dropout(config.dropout_prob)
|
| 126 |
+
|
| 127 |
+
def forward(self, x: torch.Tensor, pad_mask: torch.Tensor, freqs_cis: torch.Tensor, output_attentions: bool):
|
| 128 |
+
attn, contact = self._att_block(self.attention_norm(x), pad_mask, freqs_cis, output_attentions)
|
| 129 |
+
x = x + attn
|
| 130 |
+
x = x + self._ff_block(self.ffn_norm(x))
|
| 131 |
+
return x, contact
|
| 132 |
+
|
| 133 |
+
def _att_block(self, x: torch.Tensor, pad_mask: torch.Tensor, freqs_cis: torch.Tensor, output_attentions: bool):
|
| 134 |
+
batch_size, seq_len, _ = x.shape
|
| 135 |
+
xq, xk, xv = self.q(x), self.k(x), self.v(x)
|
| 136 |
+
|
| 137 |
+
# Reshape for rotary embeddings
|
| 138 |
+
xq = xq.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
|
| 139 |
+
xk = xk.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
|
| 140 |
+
xv = xv.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
|
| 141 |
+
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
|
| 142 |
+
|
| 143 |
+
attn = memory_efficient_attention(
|
| 144 |
+
query=xq,
|
| 145 |
+
key=xk,
|
| 146 |
+
value=xv,
|
| 147 |
+
attn_bias=pad_mask,
|
| 148 |
+
p=self.config.dropout_prob if self.training else 0,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
_attn = None
|
| 152 |
+
if output_attentions:
|
| 153 |
+
_attn = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5)
|
| 154 |
+
if pad_mask is not None:
|
| 155 |
+
_attn = _attn + pad_mask
|
| 156 |
+
_attn = _attn.softmax(-1)
|
| 157 |
+
|
| 158 |
+
return self.resid_dropout(self.wo(attn.view(batch_size, seq_len, self.config.num_attention_heads * self.d_head))), _attn
|
| 159 |
+
|
| 160 |
+
def _ff_block(self, x: torch.Tensor):
|
| 161 |
+
return self.ffn_dropout(self.ffn(x))
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
class AMPLIFYPreTrainedModel(PreTrainedModel):
|
| 165 |
+
config_class = AMPLIFYConfig
|
| 166 |
+
|
| 167 |
+
def _init_weights(self, module):
|
| 168 |
+
if isinstance(module, nn.Linear):
|
| 169 |
+
module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range)
|
| 170 |
+
if module.bias is not None:
|
| 171 |
+
module.bias.data.zero_()
|
| 172 |
+
elif isinstance(module, nn.Embedding):
|
| 173 |
+
module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class AMPLIFY(AMPLIFYPreTrainedModel):
|
| 177 |
+
"""The main model class.
|
| 178 |
+
|
| 179 |
+
Args:
|
| 180 |
+
config (amplify.model.amplify.AMPLIFYConfig): model configuration, usually defined from the Hydra configuration.
|
| 181 |
+
"""
|
| 182 |
+
def __init__(self, config: AMPLIFYConfig, **kwargs):
|
| 183 |
+
super().__init__(config)
|
| 184 |
+
|
| 185 |
+
self.config = config
|
| 186 |
+
|
| 187 |
+
self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 188 |
+
|
| 189 |
+
if config.layer_norm_after_embedding:
|
| 190 |
+
self.layer_norm_1 = RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
|
| 191 |
+
|
| 192 |
+
self.transformer_encoder = nn.ModuleList()
|
| 193 |
+
for _ in range(config.num_hidden_layers):
|
| 194 |
+
self.transformer_encoder.append(EncoderBlock(config))
|
| 195 |
+
|
| 196 |
+
if config.layer_norm_before_last_layer:
|
| 197 |
+
self.layer_norm_2 = RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
|
| 198 |
+
|
| 199 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
| 200 |
+
|
| 201 |
+
self.freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length)
|
| 202 |
+
|
| 203 |
+
# Initialize weights and apply final processing
|
| 204 |
+
self.post_init()
|
| 205 |
+
|
| 206 |
+
def forward(self, src, pad_mask=None, output_hidden_states=False, output_attentions=False):
|
| 207 |
+
# Initialize
|
| 208 |
+
hidden_states, attentions = [], []
|
| 209 |
+
|
| 210 |
+
# Expand and repeat: (Batch, Length) -> (Batch, Heads, Length, Length)
|
| 211 |
+
if pad_mask is not None and not torch.all(pad_mask == 0):
|
| 212 |
+
pad_mask = pad_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, pad_mask.size(-1), 1)
|
| 213 |
+
else:
|
| 214 |
+
pad_mask = None
|
| 215 |
+
|
| 216 |
+
# RoPE
|
| 217 |
+
self.freqs_cis = self.freqs_cis.to(src.device, non_blocking=True)
|
| 218 |
+
freqs_cis = self.freqs_cis[: src.shape[1]]
|
| 219 |
+
|
| 220 |
+
# Embedding
|
| 221 |
+
x = self.encoder(src)
|
| 222 |
+
if self.config.layer_norm_after_embedding:
|
| 223 |
+
x = self.layer_norm_1(x)
|
| 224 |
+
|
| 225 |
+
# Transformer encoder
|
| 226 |
+
for layer in self.transformer_encoder:
|
| 227 |
+
x, attn = layer(x, pad_mask, freqs_cis, output_attentions)
|
| 228 |
+
if output_hidden_states:
|
| 229 |
+
hidden_states.append(x)
|
| 230 |
+
if output_attentions:
|
| 231 |
+
attentions.append(attn)
|
| 232 |
+
|
| 233 |
+
# Classification head with layer norm
|
| 234 |
+
logits = self.decoder(self.layer_norm_2(x) if self.config.layer_norm_before_last_layer else x)
|
| 235 |
+
|
| 236 |
+
# Return logits or the output of the last hidden layer
|
| 237 |
+
return MaskedLMOutput(logits=logits, hidden_states=hidden_states, attentions=attentions)
|
| 238 |
+
|
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_": "AMPLIFY",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"AMPLIFY"
|
| 5 |
+
],
|
| 6 |
+
"att_bias": false,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "amplify.AMPLIFYConfig",
|
| 9 |
+
"AutoModel": "amplify.AMPLIFY"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 3,
|
| 12 |
+
"decoder_init_range": 0.02,
|
| 13 |
+
"dropout_prob": 0,
|
| 14 |
+
"embedding_init_range": 0.02,
|
| 15 |
+
"eos_token_id": 4,
|
| 16 |
+
"ffn_bias": false,
|
| 17 |
+
"hidden_act": "SwiGLU",
|
| 18 |
+
"hidden_size": 960,
|
| 19 |
+
"intermediate_size": 3840,
|
| 20 |
+
"layer_norm_after_embedding": false,
|
| 21 |
+
"layer_norm_before_last_layer": true,
|
| 22 |
+
"mask_token_id": 2,
|
| 23 |
+
"max_length": 2048,
|
| 24 |
+
"model_type": "AMPLIFY",
|
| 25 |
+
"norm_eps": 1e-05,
|
| 26 |
+
"num_attention_heads": 15,
|
| 27 |
+
"num_hidden_layers": 32,
|
| 28 |
+
"other_special_token_ids": null,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"pre_activation_layer_norm": true,
|
| 31 |
+
"rms_norm": true,
|
| 32 |
+
"torch_dtype": "float32",
|
| 33 |
+
"transformers_version": "4.38.2",
|
| 34 |
+
"unk_token_id": 1,
|
| 35 |
+
"vocab_path": "conf/tokenizer/amplify_vocab.txt",
|
| 36 |
+
"vocab_size": 27
|
| 37 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9df2a8e1c6c220914b2e231008d5372235192c98e47f28abc4bf17e0ea97b5ed
|
| 3 |
+
size 1416062764
|
rmsnorm.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class RMSNorm(nn.Module):
|
| 6 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 7 |
+
"""
|
| 8 |
+
Initialize the RMSNorm normalization layer.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
dim (int): The dimension of the input tensor.
|
| 12 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
| 13 |
+
|
| 14 |
+
Attributes:
|
| 15 |
+
eps (float): A small value added to the denominator for numerical stability.
|
| 16 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
| 17 |
+
|
| 18 |
+
"""
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.eps = eps
|
| 21 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
"""
|
| 25 |
+
Forward pass through the RMSNorm layer.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
x (torch.Tensor): The input tensor.
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
| 32 |
+
|
| 33 |
+
"""
|
| 34 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
|
rotary.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
| 6 |
+
"""
|
| 7 |
+
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
| 8 |
+
|
| 9 |
+
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
| 10 |
+
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
| 11 |
+
The returned tensor contains complex values in complex64 data type.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
dim (int): Dimension of the frequency tensor.
|
| 15 |
+
end (int): End index for precomputing frequencies.
|
| 16 |
+
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
torch.Tensor: Precomputed frequency tensor with complex exponentials.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
| 23 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
| 24 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
| 25 |
+
return torch.polar(torch.ones_like(freqs), freqs) # complex64
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
| 29 |
+
"""
|
| 30 |
+
Reshape frequency tensor for broadcasting it with another tensor.
|
| 31 |
+
|
| 32 |
+
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
|
| 33 |
+
for the purpose of broadcasting the frequency tensor during element-wise operations.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
|
| 37 |
+
x (torch.Tensor): Target tensor for broadcasting compatibility.
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
torch.Tensor: Reshaped frequency tensor.
|
| 41 |
+
|
| 42 |
+
Raises:
|
| 43 |
+
AssertionError: If the frequency tensor doesn't match the expected shape.
|
| 44 |
+
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
ndim = x.ndim
|
| 48 |
+
assert 0 <= 1 < ndim
|
| 49 |
+
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
| 50 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
| 51 |
+
return freqs_cis.view(*shape)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def apply_rotary_emb(
|
| 55 |
+
xq: torch.Tensor,
|
| 56 |
+
xk: torch.Tensor,
|
| 57 |
+
freqs_cis: torch.Tensor,
|
| 58 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 59 |
+
"""
|
| 60 |
+
Apply rotary embeddings to input tensors using the given frequency tensor.
|
| 61 |
+
|
| 62 |
+
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
| 63 |
+
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
| 64 |
+
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
| 65 |
+
returned as real tensors.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
xq (torch.Tensor): Query tensor to apply rotary embeddings.
|
| 69 |
+
xk (torch.Tensor): Key tensor to apply rotary embeddings.
|
| 70 |
+
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
| 74 |
+
"""
|
| 75 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
| 76 |
+
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
| 77 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
| 78 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
| 79 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
| 80 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<bos>",
|
| 3 |
+
"eos_token": "<eos>",
|
| 4 |
+
"mask_token": "<mask>",
|
| 5 |
+
"pad_token": "<pad>",
|
| 6 |
+
"unk_token": "<unk>"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"version": "1.0",
|
| 3 |
+
"truncation": null,
|
| 4 |
+
"padding": null,
|
| 5 |
+
"added_tokens": [
|
| 6 |
+
{
|
| 7 |
+
"id": 0,
|
| 8 |
+
"content": "<pad>",
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"lstrip": false,
|
| 11 |
+
"rstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"special": true
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"id": 1,
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"special": true
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": 2,
|
| 26 |
+
"content": "<mask>",
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"special": true
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"id": 3,
|
| 35 |
+
"content": "<bos>",
|
| 36 |
+
"single_word": false,
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"rstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"special": true
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"id": 4,
|
| 44 |
+
"content": "<eos>",
|
| 45 |
+
"single_word": false,
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"special": true
|
| 50 |
+
}
|
| 51 |
+
],
|
| 52 |
+
"normalizer": null,
|
| 53 |
+
"pre_tokenizer": {
|
| 54 |
+
"type": "Split",
|
| 55 |
+
"pattern": {
|
| 56 |
+
"String": ""
|
| 57 |
+
},
|
| 58 |
+
"behavior": "Removed",
|
| 59 |
+
"invert": false
|
| 60 |
+
},
|
| 61 |
+
"post_processor": {
|
| 62 |
+
"type": "TemplateProcessing",
|
| 63 |
+
"single": [
|
| 64 |
+
{
|
| 65 |
+
"SpecialToken": {
|
| 66 |
+
"id": "<bos>",
|
| 67 |
+
"type_id": 0
|
| 68 |
+
}
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"Sequence": {
|
| 72 |
+
"id": "A",
|
| 73 |
+
"type_id": 0
|
| 74 |
+
}
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"SpecialToken": {
|
| 78 |
+
"id": "<eos>",
|
| 79 |
+
"type_id": 0
|
| 80 |
+
}
|
| 81 |
+
}
|
| 82 |
+
],
|
| 83 |
+
"pair": [
|
| 84 |
+
{
|
| 85 |
+
"Sequence": {
|
| 86 |
+
"id": "A",
|
| 87 |
+
"type_id": 0
|
| 88 |
+
}
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"Sequence": {
|
| 92 |
+
"id": "B",
|
| 93 |
+
"type_id": 1
|
| 94 |
+
}
|
| 95 |
+
}
|
| 96 |
+
],
|
| 97 |
+
"special_tokens": {
|
| 98 |
+
"<bos>": {
|
| 99 |
+
"id": "<bos>",
|
| 100 |
+
"ids": [
|
| 101 |
+
3
|
| 102 |
+
],
|
| 103 |
+
"tokens": [
|
| 104 |
+
"<bos>"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
"<eos>": {
|
| 108 |
+
"id": "<eos>",
|
| 109 |
+
"ids": [
|
| 110 |
+
4
|
| 111 |
+
],
|
| 112 |
+
"tokens": [
|
| 113 |
+
"<eos>"
|
| 114 |
+
]
|
| 115 |
+
}
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
"decoder": null,
|
| 119 |
+
"model": {
|
| 120 |
+
"type": "WordPiece",
|
| 121 |
+
"unk_token": "<unk>",
|
| 122 |
+
"continuing_subword_prefix": "##",
|
| 123 |
+
"max_input_chars_per_word": 100,
|
| 124 |
+
"vocab": {
|
| 125 |
+
"<pad>": 0,
|
| 126 |
+
"<unk>": 1,
|
| 127 |
+
"<mask>": 2,
|
| 128 |
+
"<bos>": 3,
|
| 129 |
+
"<eos>": 4,
|
| 130 |
+
"|": 5,
|
| 131 |
+
"L": 6,
|
| 132 |
+
"A": 7,
|
| 133 |
+
"G": 8,
|
| 134 |
+
"V": 9,
|
| 135 |
+
"S": 10,
|
| 136 |
+
"E": 11,
|
| 137 |
+
"R": 12,
|
| 138 |
+
"T": 13,
|
| 139 |
+
"I": 14,
|
| 140 |
+
"D": 15,
|
| 141 |
+
"P": 16,
|
| 142 |
+
"K": 17,
|
| 143 |
+
"Q": 18,
|
| 144 |
+
"N": 19,
|
| 145 |
+
"F": 20,
|
| 146 |
+
"Y": 21,
|
| 147 |
+
"M": 22,
|
| 148 |
+
"H": 23,
|
| 149 |
+
"W": 24,
|
| 150 |
+
"C": 25,
|
| 151 |
+
"B": 26
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<pad>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<unk>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "<mask>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<bos>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "<eos>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<bos>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"eos_token": "<eos>",
|
| 47 |
+
"mask_token": "<mask>",
|
| 48 |
+
"model_input_names": [
|
| 49 |
+
"input_ids",
|
| 50 |
+
"attention_mask"
|
| 51 |
+
],
|
| 52 |
+
"model_max_length": 2048,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"padding_side": "right",
|
| 55 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 56 |
+
"truncation_side": "right",
|
| 57 |
+
"unk_token": "<unk>"
|
| 58 |
+
}
|