Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- train_results.json +8 -0
- trainer_state.json +250 -0
README.md
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-0.5B-Instruct
|
| 3 |
+
library_name: transformers
|
| 4 |
+
model_name: qwen-2.5-0.5B-instruct-sft-lora-countdown-deepseek-correct-seq8k-5k
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- trl
|
| 8 |
+
- sft
|
| 9 |
+
licence: license
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Model Card for qwen-2.5-0.5B-instruct-sft-lora-countdown-deepseek-correct-seq8k-5k
|
| 13 |
+
|
| 14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct).
|
| 15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 16 |
+
|
| 17 |
+
## Quick start
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from transformers import pipeline
|
| 21 |
+
|
| 22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
| 23 |
+
generator = pipeline("text-generation", model="chloeli/qwen-2.5-0.5B-instruct-sft-lora-countdown-deepseek-correct-seq8k-5k", device="cuda")
|
| 24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 25 |
+
print(output["generated_text"])
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
## Training procedure
|
| 29 |
+
|
| 30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chloeli/huggingface/runs/i0a472xd)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
This model was trained with SFT.
|
| 34 |
+
|
| 35 |
+
### Framework versions
|
| 36 |
+
|
| 37 |
+
- TRL: 0.15.2
|
| 38 |
+
- Transformers: 4.49.0
|
| 39 |
+
- Pytorch: 2.6.0
|
| 40 |
+
- Datasets: 3.3.2
|
| 41 |
+
- Tokenizers: 0.21.0
|
| 42 |
+
|
| 43 |
+
## Citations
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
Cite TRL as:
|
| 48 |
+
|
| 49 |
+
```bibtex
|
| 50 |
+
@misc{vonwerra2022trl,
|
| 51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 53 |
+
year = 2020,
|
| 54 |
+
journal = {GitHub repository},
|
| 55 |
+
publisher = {GitHub},
|
| 56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 57 |
+
}
|
| 58 |
+
```
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 1.7762889804808192e+16,
|
| 3 |
+
"train_loss": 0.06599626523256302,
|
| 4 |
+
"train_runtime": 280.6621,
|
| 5 |
+
"train_samples": 1000,
|
| 6 |
+
"train_samples_per_second": 3.563,
|
| 7 |
+
"train_steps_per_second": 0.445
|
| 8 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 1.7762889804808192e+16,
|
| 3 |
+
"train_loss": 0.06599626523256302,
|
| 4 |
+
"train_runtime": 280.6621,
|
| 5 |
+
"train_samples": 1000,
|
| 6 |
+
"train_samples_per_second": 3.563,
|
| 7 |
+
"train_steps_per_second": 0.445
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.0,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 125,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.008,
|
| 13 |
+
"grad_norm": 0.3769792318344116,
|
| 14 |
+
"learning_rate": 1.5384615384615387e-05,
|
| 15 |
+
"loss": 0.3107,
|
| 16 |
+
"mean_token_accuracy": 0.9287307560443878,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.04,
|
| 21 |
+
"grad_norm": 0.26893970370292664,
|
| 22 |
+
"learning_rate": 7.692307692307693e-05,
|
| 23 |
+
"loss": 0.2756,
|
| 24 |
+
"mean_token_accuracy": 0.9344838559627533,
|
| 25 |
+
"step": 5
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"epoch": 0.08,
|
| 29 |
+
"grad_norm": 0.15078027546405792,
|
| 30 |
+
"learning_rate": 0.00015384615384615385,
|
| 31 |
+
"loss": 0.2688,
|
| 32 |
+
"mean_token_accuracy": 0.9306879937648773,
|
| 33 |
+
"step": 10
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.12,
|
| 37 |
+
"grad_norm": 0.1351465880870819,
|
| 38 |
+
"learning_rate": 0.00019984268150178167,
|
| 39 |
+
"loss": 0.2451,
|
| 40 |
+
"mean_token_accuracy": 0.9370594084262848,
|
| 41 |
+
"step": 15
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"epoch": 0.16,
|
| 45 |
+
"grad_norm": 0.14794091880321503,
|
| 46 |
+
"learning_rate": 0.00019807852804032305,
|
| 47 |
+
"loss": 0.1416,
|
| 48 |
+
"mean_token_accuracy": 0.9599717617034912,
|
| 49 |
+
"step": 20
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"epoch": 0.2,
|
| 53 |
+
"grad_norm": 0.12860107421875,
|
| 54 |
+
"learning_rate": 0.00019438833303083678,
|
| 55 |
+
"loss": 0.1071,
|
| 56 |
+
"mean_token_accuracy": 0.9663936257362366,
|
| 57 |
+
"step": 25
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.24,
|
| 61 |
+
"grad_norm": 0.12796033918857574,
|
| 62 |
+
"learning_rate": 0.00018884456359788724,
|
| 63 |
+
"loss": 0.0581,
|
| 64 |
+
"mean_token_accuracy": 0.979266232252121,
|
| 65 |
+
"step": 30
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.28,
|
| 69 |
+
"grad_norm": 0.08177585899829865,
|
| 70 |
+
"learning_rate": 0.00018155608689592604,
|
| 71 |
+
"loss": 0.0449,
|
| 72 |
+
"mean_token_accuracy": 0.98313889503479,
|
| 73 |
+
"step": 35
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.32,
|
| 77 |
+
"grad_norm": 0.06311054527759552,
|
| 78 |
+
"learning_rate": 0.0001726660322034027,
|
| 79 |
+
"loss": 0.0378,
|
| 80 |
+
"mean_token_accuracy": 0.9852405071258545,
|
| 81 |
+
"step": 40
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.36,
|
| 85 |
+
"grad_norm": 0.07140650600194931,
|
| 86 |
+
"learning_rate": 0.00016234898018587337,
|
| 87 |
+
"loss": 0.0332,
|
| 88 |
+
"mean_token_accuracy": 0.9863865613937378,
|
| 89 |
+
"step": 45
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"epoch": 0.4,
|
| 93 |
+
"grad_norm": 0.09618227928876877,
|
| 94 |
+
"learning_rate": 0.00015080753452465296,
|
| 95 |
+
"loss": 0.0328,
|
| 96 |
+
"mean_token_accuracy": 0.9867150962352753,
|
| 97 |
+
"step": 50
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"epoch": 0.44,
|
| 101 |
+
"grad_norm": 0.07409857958555222,
|
| 102 |
+
"learning_rate": 0.000138268343236509,
|
| 103 |
+
"loss": 0.0303,
|
| 104 |
+
"mean_token_accuracy": 0.9873311817646027,
|
| 105 |
+
"step": 55
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0.48,
|
| 109 |
+
"grad_norm": 0.0733385905623436,
|
| 110 |
+
"learning_rate": 0.0001249776478167227,
|
| 111 |
+
"loss": 0.0312,
|
| 112 |
+
"mean_token_accuracy": 0.9869321703910827,
|
| 113 |
+
"step": 60
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"epoch": 0.52,
|
| 117 |
+
"grad_norm": 0.05522334575653076,
|
| 118 |
+
"learning_rate": 0.00011119644761033078,
|
| 119 |
+
"loss": 0.0276,
|
| 120 |
+
"mean_token_accuracy": 0.9882255017757415,
|
| 121 |
+
"step": 65
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.56,
|
| 125 |
+
"grad_norm": 0.05922674387693405,
|
| 126 |
+
"learning_rate": 9.719537437241312e-05,
|
| 127 |
+
"loss": 0.0279,
|
| 128 |
+
"mean_token_accuracy": 0.9881398558616639,
|
| 129 |
+
"step": 70
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.6,
|
| 133 |
+
"grad_norm": 0.08130958676338196,
|
| 134 |
+
"learning_rate": 8.324937766952638e-05,
|
| 135 |
+
"loss": 0.027,
|
| 136 |
+
"mean_token_accuracy": 0.9887233972549438,
|
| 137 |
+
"step": 75
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"epoch": 0.64,
|
| 141 |
+
"grad_norm": 0.052543755620718,
|
| 142 |
+
"learning_rate": 6.963232548903853e-05,
|
| 143 |
+
"loss": 0.0251,
|
| 144 |
+
"mean_token_accuracy": 0.9895359516143799,
|
| 145 |
+
"step": 80
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"epoch": 0.68,
|
| 149 |
+
"grad_norm": 0.06618787348270416,
|
| 150 |
+
"learning_rate": 5.6611626088244194e-05,
|
| 151 |
+
"loss": 0.0249,
|
| 152 |
+
"mean_token_accuracy": 0.9895861744880676,
|
| 153 |
+
"step": 85
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.72,
|
| 157 |
+
"grad_norm": 0.042255669832229614,
|
| 158 |
+
"learning_rate": 4.444297669803981e-05,
|
| 159 |
+
"loss": 0.0262,
|
| 160 |
+
"mean_token_accuracy": 0.9887180864810944,
|
| 161 |
+
"step": 90
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"epoch": 0.76,
|
| 165 |
+
"grad_norm": 0.04344850778579712,
|
| 166 |
+
"learning_rate": 3.336534220479961e-05,
|
| 167 |
+
"loss": 0.026,
|
| 168 |
+
"mean_token_accuracy": 0.988743656873703,
|
| 169 |
+
"step": 95
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"epoch": 0.8,
|
| 173 |
+
"grad_norm": 0.05336128920316696,
|
| 174 |
+
"learning_rate": 2.3596262417839255e-05,
|
| 175 |
+
"loss": 0.027,
|
| 176 |
+
"mean_token_accuracy": 0.9886524379253387,
|
| 177 |
+
"step": 100
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.84,
|
| 181 |
+
"grad_norm": 0.04427241161465645,
|
| 182 |
+
"learning_rate": 1.5327580077171587e-05,
|
| 183 |
+
"loss": 0.0264,
|
| 184 |
+
"mean_token_accuracy": 0.9887325942516327,
|
| 185 |
+
"step": 105
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.88,
|
| 189 |
+
"grad_norm": 0.05719885602593422,
|
| 190 |
+
"learning_rate": 8.72167349386811e-06,
|
| 191 |
+
"loss": 0.0246,
|
| 192 |
+
"mean_token_accuracy": 0.989437359571457,
|
| 193 |
+
"step": 110
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"epoch": 0.92,
|
| 197 |
+
"grad_norm": 0.05920225381851196,
|
| 198 |
+
"learning_rate": 3.908267805490051e-06,
|
| 199 |
+
"loss": 0.0248,
|
| 200 |
+
"mean_token_accuracy": 0.9892986714839935,
|
| 201 |
+
"step": 115
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 0.96,
|
| 205 |
+
"grad_norm": 0.052159372717142105,
|
| 206 |
+
"learning_rate": 9.818874663554357e-07,
|
| 207 |
+
"loss": 0.0245,
|
| 208 |
+
"mean_token_accuracy": 0.9898675382137299,
|
| 209 |
+
"step": 120
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"epoch": 1.0,
|
| 213 |
+
"grad_norm": 0.040659721940755844,
|
| 214 |
+
"learning_rate": 0.0,
|
| 215 |
+
"loss": 0.0244,
|
| 216 |
+
"mean_token_accuracy": 0.9897443354129791,
|
| 217 |
+
"step": 125
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"epoch": 1.0,
|
| 221 |
+
"step": 125,
|
| 222 |
+
"total_flos": 1.7762889804808192e+16,
|
| 223 |
+
"train_loss": 0.06599626523256302,
|
| 224 |
+
"train_runtime": 280.6621,
|
| 225 |
+
"train_samples_per_second": 3.563,
|
| 226 |
+
"train_steps_per_second": 0.445
|
| 227 |
+
}
|
| 228 |
+
],
|
| 229 |
+
"logging_steps": 5,
|
| 230 |
+
"max_steps": 125,
|
| 231 |
+
"num_input_tokens_seen": 0,
|
| 232 |
+
"num_train_epochs": 1,
|
| 233 |
+
"save_steps": 100,
|
| 234 |
+
"stateful_callbacks": {
|
| 235 |
+
"TrainerControl": {
|
| 236 |
+
"args": {
|
| 237 |
+
"should_epoch_stop": false,
|
| 238 |
+
"should_evaluate": false,
|
| 239 |
+
"should_log": false,
|
| 240 |
+
"should_save": true,
|
| 241 |
+
"should_training_stop": true
|
| 242 |
+
},
|
| 243 |
+
"attributes": {}
|
| 244 |
+
}
|
| 245 |
+
},
|
| 246 |
+
"total_flos": 1.7762889804808192e+16,
|
| 247 |
+
"train_batch_size": 4,
|
| 248 |
+
"trial_name": null,
|
| 249 |
+
"trial_params": null
|
| 250 |
+
}
|