cisco-ehsan commited on
Commit
96d3e32
·
verified ·
1 Parent(s): 77f34be

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - cross-encoder
8
+ - reranker
9
+ - generated_from_trainer
10
+ - dataset_size:35705
11
+ - loss:CachedMultipleNegativesRankingLoss
12
+ pipeline_tag: text-ranking
13
+ library_name: sentence-transformers
14
+ ---
15
+
16
+ # SecureBERT 2.0 Cross-Encoder fine-tuned
17
+
18
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model trained using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
19
+
20
+ ## Model Details
21
+
22
+ ### Model Description
23
+ - **Model Type:** Cross Encoder
24
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
25
+ - **Maximum Sequence Length:** 1024 tokens
26
+ - **Number of Output Labels:** 1 label
27
+ <!-- - **Training Dataset:** Unknown -->
28
+ - **Language:** en
29
+ - **License:** apache-2.0
30
+
31
+ ### Model Sources
32
+
33
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
34
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
35
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
36
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
37
+
38
+ ## Usage
39
+
40
+ ### Direct Usage (Sentence Transformers)
41
+
42
+ First install the Sentence Transformers library:
43
+
44
+ ```bash
45
+ pip install -U sentence-transformers
46
+ ```
47
+
48
+ Then you can load this model and run inference.
49
+ ```python
50
+ from sentence_transformers import CrossEncoder
51
+
52
+ # Download from the 🤗 Hub
53
+ model = CrossEncoder("cross_encoder_model_id")
54
+ # Get scores for pairs of texts
55
+ pairs = [
56
+ ['What is the purpose of the withdrawn draft document mentioned?', 'The withdrawn draft document is provided solely for historical purposes.'],
57
+ ["What are the implications of Stealc's use of Sqlite3 Dll for data retrieval from browsers?", "Stealc's use of the Sqlite3 Dll for data retrieval from browsers has several implications for cybersecurity. Firstly, it demonstrates the malware's sophistication in interacting directly with browser databases, allowing it to bypass simpler data extraction methods that might be more easily detected. This approach enables Stealc to execute complex queries against the browser's SQLite databases to extract sensitive information such as cookies, saved passwords, and browsing history. The reliance on Sqlite3 Dll also indicates that Stealc can potentially adapt to extract data from any application that uses SQLite for data storage, broadening its threat landscape. For cybersecurity professionals, this underscores the need for robust monitoring and protection mechanisms at the database level, as well as the importance of securing applications that use SQLite databases against unauthorized access. Additionally, it highlights the necessity for continuous monitoring of system and application dependencies for signs of tampering or malicious use, as legitimate tools like Sqlite3 Dll can be exploited by malware to facilitate data theft."],
58
+ ['Which of the following is a key security requirement for an effective Information Security Awareness program?', 'Segmenting the audience based on their role'],
59
+ ['What steps should be taken post-acquisition to integrate cybersecurity practices effectively?', "Post-acquisition, effectively integrating cybersecurity practices involves several critical steps to ensure a seamless transition and maintain a strong security posture: 1. Conduct a Comprehensive Security Assessment: Perform a detailed assessment of the acquired company's cybersecurity infrastructure, policies, and practices to identify any gaps or vulnerabilities. 2. Align Cybersecurity Policies and Procedures: Harmonize the cybersecurity policies and procedures of both companies to ensure consistent standards and practices across the merged entity. This includes data protection, incident response, and access control policies. 3. Integrate Security Technologies: Evaluate and integrate security technologies from both companies, such as firewalls, intrusion detection systems, and endpoint protection solutions, to create a unified security architecture. 4. Consolidate Security Teams: Merge the cybersecurity teams of both companies to streamline operations and foster collaboration. Ensure that roles, responsibilities, and reporting structures are clearly defined. 5. Provide Training and Awareness: Conduct comprehensive training sessions for all employees to familiarize them with the integrated company's cybersecurity policies, practices, and tools. 6. Establish Continuous Monitoring and Threat Hunting: Implement continuous monitoring of the integrated network and systems to detect and respond to threats promptly. Engage in proactive threat hunting to identify and mitigate potential security issues before they can be exploited. 7. Review and Update Incident Response Plans: Update the incident response plans to reflect the integrated company's structure and capabilities. Conduct regular drills to ensure readiness in the event of a cybersecurity incident. By following these steps, companies can effectively integrate cybersecurity practices post-acquisition, minimizing risks and ensuring a secure and resilient IT environment."],
60
+ ['How can you architect zero‐trust principles to render Kerberoasting ineffective?', "Architecting zero-trust principles to mitigate Kerberoasting attacks requires implementing comprehensive identity verification, continuous monitoring, and segmented network access controls that fundamentally challenge the assumptions underlying this MITRE ATT&CK technique (T1558.003).\\n\\n**Identity-Centric Security Architecture:**\\nImplement multi-factor authentication (MFA) universally across all privileged accounts, eliminating password-only dependencies that Kerberoasting exploits. Deploy privileged access management (PAM) solutions with just-in-time access provisioning, ensuring service accounts receive minimal necessary permissions and elevated credentials only during specific operational windows. This aligns with NIST CSF's Protect function (PR.AC-1) by implementing identity governance frameworks that continuously validate user and service account legitimacy.\\n\\n**Kerberos Protocol Hardening:**\\nConfigure domain controllers to implement Kerberos Armoring (FAST), which encrypts pre-authentication data using AES encryption rather than RC4. This prevents offline password cracking attempts characteristic of Kerberoasting workflows. Additionally, deploy Managed Service Accounts (MSAs) and Group Managed Service Accounts (gMSAs) to eliminate static service account passwords entirely, replacing them with automatically managed credentials that cannot be extracted from memory.\\n\\n**Network Segmentation and Zero-Trust Network Access:**\\nImplement microsegmentation strategies that limit lateral movement capabilities even after successful credential compromise. Deploy zero-trust network access (ZTNA) solutions that authenticate and authorize every connection attempt, regardless of source location. This addresses MITRE ATT&CK's lateral movement tactics by ensuring compromised service accounts cannot freely traverse the network infrastructure.\\n\\n**Continuous Monitoring and Detection:**\\nEstablish behavioral analytics platforms monitoring Kerberos ticket requests for anomalous patterns indicating potential Kerberoasting attempts. Deploy endpoint detection and response (EDR) solutions capable of identifying unusual memory access patterns targeting service account credentials. Implement Security Information and Event Management (SIEM) correlation rules detecting multiple failed authentication attempts against high-privilege service accounts.\\n\\n**Credential Hygiene and Rotation:**\\nImplement automated credential rotation policies for all service accounts, ensuring passwords change frequently enough to limit attack windows. Deploy password complexity requirements exceeding common Kerberoasting cracking capabilities, incorporating extended character sets and minimum length requirements that significantly increase computational costs for offline attacks.\\n\\nThis comprehensive approach transforms the traditional trust-on-first-use model into a continuous verification paradigm where every authentication event requires fresh validation, making Kerberoasting economically infeasible while maintaining operational efficiency through automated policy enforcement."],
61
+ ]
62
+ scores = model.predict(pairs)
63
+ print(scores.shape)
64
+ # (5,)
65
+
66
+ # Or rank different texts based on similarity to a single text
67
+ ranks = model.rank(
68
+ 'What is the purpose of the withdrawn draft document mentioned?',
69
+ [
70
+ 'The withdrawn draft document is provided solely for historical purposes.',
71
+ "Stealc's use of the Sqlite3 Dll for data retrieval from browsers has several implications for cybersecurity. Firstly, it demonstrates the malware's sophistication in interacting directly with browser databases, allowing it to bypass simpler data extraction methods that might be more easily detected. This approach enables Stealc to execute complex queries against the browser's SQLite databases to extract sensitive information such as cookies, saved passwords, and browsing history. The reliance on Sqlite3 Dll also indicates that Stealc can potentially adapt to extract data from any application that uses SQLite for data storage, broadening its threat landscape. For cybersecurity professionals, this underscores the need for robust monitoring and protection mechanisms at the database level, as well as the importance of securing applications that use SQLite databases against unauthorized access. Additionally, it highlights the necessity for continuous monitoring of system and application dependencies for signs of tampering or malicious use, as legitimate tools like Sqlite3 Dll can be exploited by malware to facilitate data theft.",
72
+ 'Segmenting the audience based on their role',
73
+ "Post-acquisition, effectively integrating cybersecurity practices involves several critical steps to ensure a seamless transition and maintain a strong security posture: 1. Conduct a Comprehensive Security Assessment: Perform a detailed assessment of the acquired company's cybersecurity infrastructure, policies, and practices to identify any gaps or vulnerabilities. 2. Align Cybersecurity Policies and Procedures: Harmonize the cybersecurity policies and procedures of both companies to ensure consistent standards and practices across the merged entity. This includes data protection, incident response, and access control policies. 3. Integrate Security Technologies: Evaluate and integrate security technologies from both companies, such as firewalls, intrusion detection systems, and endpoint protection solutions, to create a unified security architecture. 4. Consolidate Security Teams: Merge the cybersecurity teams of both companies to streamline operations and foster collaboration. Ensure that roles, responsibilities, and reporting structures are clearly defined. 5. Provide Training and Awareness: Conduct comprehensive training sessions for all employees to familiarize them with the integrated company's cybersecurity policies, practices, and tools. 6. Establish Continuous Monitoring and Threat Hunting: Implement continuous monitoring of the integrated network and systems to detect and respond to threats promptly. Engage in proactive threat hunting to identify and mitigate potential security issues before they can be exploited. 7. Review and Update Incident Response Plans: Update the incident response plans to reflect the integrated company's structure and capabilities. Conduct regular drills to ensure readiness in the event of a cybersecurity incident. By following these steps, companies can effectively integrate cybersecurity practices post-acquisition, minimizing risks and ensuring a secure and resilient IT environment.",
74
+ "Architecting zero-trust principles to mitigate Kerberoasting attacks requires implementing comprehensive identity verification, continuous monitoring, and segmented network access controls that fundamentally challenge the assumptions underlying this MITRE ATT&CK technique (T1558.003).\\n\\n**Identity-Centric Security Architecture:**\\nImplement multi-factor authentication (MFA) universally across all privileged accounts, eliminating password-only dependencies that Kerberoasting exploits. Deploy privileged access management (PAM) solutions with just-in-time access provisioning, ensuring service accounts receive minimal necessary permissions and elevated credentials only during specific operational windows. This aligns with NIST CSF's Protect function (PR.AC-1) by implementing identity governance frameworks that continuously validate user and service account legitimacy.\\n\\n**Kerberos Protocol Hardening:**\\nConfigure domain controllers to implement Kerberos Armoring (FAST), which encrypts pre-authentication data using AES encryption rather than RC4. This prevents offline password cracking attempts characteristic of Kerberoasting workflows. Additionally, deploy Managed Service Accounts (MSAs) and Group Managed Service Accounts (gMSAs) to eliminate static service account passwords entirely, replacing them with automatically managed credentials that cannot be extracted from memory.\\n\\n**Network Segmentation and Zero-Trust Network Access:**\\nImplement microsegmentation strategies that limit lateral movement capabilities even after successful credential compromise. Deploy zero-trust network access (ZTNA) solutions that authenticate and authorize every connection attempt, regardless of source location. This addresses MITRE ATT&CK's lateral movement tactics by ensuring compromised service accounts cannot freely traverse the network infrastructure.\\n\\n**Continuous Monitoring and Detection:**\\nEstablish behavioral analytics platforms monitoring Kerberos ticket requests for anomalous patterns indicating potential Kerberoasting attempts. Deploy endpoint detection and response (EDR) solutions capable of identifying unusual memory access patterns targeting service account credentials. Implement Security Information and Event Management (SIEM) correlation rules detecting multiple failed authentication attempts against high-privilege service accounts.\\n\\n**Credential Hygiene and Rotation:**\\nImplement automated credential rotation policies for all service accounts, ensuring passwords change frequently enough to limit attack windows. Deploy password complexity requirements exceeding common Kerberoasting cracking capabilities, incorporating extended character sets and minimum length requirements that significantly increase computational costs for offline attacks.\\n\\nThis comprehensive approach transforms the traditional trust-on-first-use model into a continuous verification paradigm where every authentication event requires fresh validation, making Kerberoasting economically infeasible while maintaining operational efficiency through automated policy enforcement.",
75
+ ]
76
+ )
77
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
78
+ ```
79
+
80
+ <!--
81
+ ### Direct Usage (Transformers)
82
+
83
+ <details><summary>Click to see the direct usage in Transformers</summary>
84
+
85
+ </details>
86
+ -->
87
+
88
+ <!--
89
+ ### Downstream Usage (Sentence Transformers)
90
+
91
+ You can finetune this model on your own dataset.
92
+
93
+ <details><summary>Click to expand</summary>
94
+
95
+ </details>
96
+ -->
97
+
98
+ <!--
99
+ ### Out-of-Scope Use
100
+
101
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
102
+ -->
103
+
104
+ <!--
105
+ ## Bias, Risks and Limitations
106
+
107
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
108
+ -->
109
+
110
+ <!--
111
+ ### Recommendations
112
+
113
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
114
+ -->
115
+
116
+ ## Training Details
117
+
118
+ ### Training Dataset
119
+
120
+ #### Unnamed Dataset
121
+
122
+ * Size: 35,705 training samples
123
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
124
+ * Approximate statistics based on the first 1000 samples:
125
+ | | sentence1 | sentence2 | label |
126
+ |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|
127
+ | type | string | string | float |
128
+ | details | <ul><li>min: 24 characters</li><li>mean: 98.46 characters</li><li>max: 415 characters</li></ul> | <ul><li>min: 3 characters</li><li>mean: 1468.34 characters</li><li>max: 5413 characters</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
129
+ * Samples:
130
+ | sentence1 | sentence2 | label |
131
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
132
+ | <code>Explain the implementation details of C2 protocols that use IPv6 extension headers and fragmentation for covert data channels while evading deep packet inspection.</code> | <code>IPv6 offers many new possibilities for malicious code authors in terms of evasion. The protocol introduces a number of new features such as multiple addresses per interface, auto-configuration, routing header options, and others. Some of these can be used to hide traffic and data transfers, making it difficult for packet inspection systems to detect them or associate with known malware command-and-control (C2) channels. For example, the 41 protocol number is reserved for IPv6 over IPv4 tunneling. This feature allows packets encapsulated in an IPv6 header to be transported over an IPv4 network. However, there are no restrictions on what the encapsulated traffic can be. A malicious actor could encapsulate data from a botnet or C2 channel within an IPv6 tunnel that is routed through an IPv4 network. Another example is the 137 protocol number reserved for Dynamic Host Configuration Protocol (DHCP). DHCP uses broadcast to obtain IP addresses and configuration information, so using this as a...</code> | <code>1.0</code> |
133
+ | <code>What does each switchport represent on a switch?</code> | <code>Collision domain</code> | <code>1.0</code> |
134
+ | <code>How can defenders avoid alert fatigue by converting reactive detections into hunt signature exceptions?</code> | <code>Alert fatigue represents a critical challenge in cybersecurity operations, where security teams become desensitized to frequent notifications, potentially missing genuine threats buried within noise. Converting reactive detections into hunt signature exceptions offers a strategic approach to mitigate this issue while enhancing proactive threat hunting capabilities.\n\nThe foundation lies in establishing a robust detection framework aligned with NIST Cybersecurity Framework's Detect (DE) function, specifically DE.AE (Anomalies and Events) and DE.CM (Security Continuous Monitoring). Organizations should implement tiered alert severity classifications using the Common Vulnerability Scoring System (CVSS) or organization-specific risk matrices. This categorization enables defenders to prioritize high-fidelity alerts while systematically analyzing lower-priority notifications during structured hunt cycles.\n\nHunt signature exceptions operate by transforming previously reactive, rule-based d...</code> | <code>1.0</code> |
135
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
136
+ ```json
137
+ {
138
+ "scale": 10.0,
139
+ "num_negatives": 10,
140
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
141
+ "mini_batch_size": 24
142
+ }
143
+ ```
144
+
145
+ ### Evaluation Dataset
146
+
147
+ #### Unnamed Dataset
148
+
149
+ * Size: 8,927 evaluation samples
150
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | sentence1 | sentence2 | label |
153
+ |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|
154
+ | type | string | string | float |
155
+ | details | <ul><li>min: 17 characters</li><li>mean: 97.23 characters</li><li>max: 341 characters</li></ul> | <ul><li>min: 2 characters</li><li>mean: 1537.31 characters</li><li>max: 5375 characters</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
156
+ * Samples:
157
+ | sentence1 | sentence2 | label |
158
+ |:---------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
159
+ | <code>What is the purpose of the withdrawn draft document mentioned?</code> | <code>The withdrawn draft document is provided solely for historical purposes.</code> | <code>1.0</code> |
160
+ | <code>What are the implications of Stealc's use of Sqlite3 Dll for data retrieval from browsers?</code> | <code>Stealc's use of the Sqlite3 Dll for data retrieval from browsers has several implications for cybersecurity. Firstly, it demonstrates the malware's sophistication in interacting directly with browser databases, allowing it to bypass simpler data extraction methods that might be more easily detected. This approach enables Stealc to execute complex queries against the browser's SQLite databases to extract sensitive information such as cookies, saved passwords, and browsing history. The reliance on Sqlite3 Dll also indicates that Stealc can potentially adapt to extract data from any application that uses SQLite for data storage, broadening its threat landscape. For cybersecurity professionals, this underscores the need for robust monitoring and protection mechanisms at the database level, as well as the importance of securing applications that use SQLite databases against unauthorized access. Additionally, it highlights the necessity for continuous monitoring of system and application dep...</code> | <code>1.0</code> |
161
+ | <code>Which of the following is a key security requirement for an effective Information Security Awareness program?</code> | <code>Segmenting the audience based on their role</code> | <code>1.0</code> |
162
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
163
+ ```json
164
+ {
165
+ "scale": 10.0,
166
+ "num_negatives": 10,
167
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
168
+ "mini_batch_size": 24
169
+ }
170
+ ```
171
+
172
+ ### Training Hyperparameters
173
+ #### Non-Default Hyperparameters
174
+
175
+ - `eval_strategy`: steps
176
+ - `per_device_train_batch_size`: 20
177
+ - `per_device_eval_batch_size`: 20
178
+ - `learning_rate`: 2e-05
179
+ - `num_train_epochs`: 10
180
+ - `warmup_ratio`: 0.1
181
+ - `seed`: 12
182
+ - `bf16`: True
183
+ - `load_best_model_at_end`: True
184
+
185
+ #### All Hyperparameters
186
+ <details><summary>Click to expand</summary>
187
+
188
+ - `overwrite_output_dir`: False
189
+ - `do_predict`: False
190
+ - `eval_strategy`: steps
191
+ - `prediction_loss_only`: True
192
+ - `per_device_train_batch_size`: 20
193
+ - `per_device_eval_batch_size`: 20
194
+ - `per_gpu_train_batch_size`: None
195
+ - `per_gpu_eval_batch_size`: None
196
+ - `gradient_accumulation_steps`: 1
197
+ - `eval_accumulation_steps`: None
198
+ - `torch_empty_cache_steps`: None
199
+ - `learning_rate`: 2e-05
200
+ - `weight_decay`: 0.0
201
+ - `adam_beta1`: 0.9
202
+ - `adam_beta2`: 0.999
203
+ - `adam_epsilon`: 1e-08
204
+ - `max_grad_norm`: 1.0
205
+ - `num_train_epochs`: 10
206
+ - `max_steps`: -1
207
+ - `lr_scheduler_type`: linear
208
+ - `lr_scheduler_kwargs`: {}
209
+ - `warmup_ratio`: 0.1
210
+ - `warmup_steps`: 0
211
+ - `log_level`: passive
212
+ - `log_level_replica`: warning
213
+ - `log_on_each_node`: True
214
+ - `logging_nan_inf_filter`: True
215
+ - `save_safetensors`: True
216
+ - `save_on_each_node`: False
217
+ - `save_only_model`: False
218
+ - `restore_callback_states_from_checkpoint`: False
219
+ - `no_cuda`: False
220
+ - `use_cpu`: False
221
+ - `use_mps_device`: False
222
+ - `seed`: 12
223
+ - `data_seed`: None
224
+ - `jit_mode_eval`: False
225
+ - `use_ipex`: False
226
+ - `bf16`: True
227
+ - `fp16`: False
228
+ - `fp16_opt_level`: O1
229
+ - `half_precision_backend`: auto
230
+ - `bf16_full_eval`: False
231
+ - `fp16_full_eval`: False
232
+ - `tf32`: None
233
+ - `local_rank`: 0
234
+ - `ddp_backend`: None
235
+ - `tpu_num_cores`: None
236
+ - `tpu_metrics_debug`: False
237
+ - `debug`: []
238
+ - `dataloader_drop_last`: True
239
+ - `dataloader_num_workers`: 0
240
+ - `dataloader_prefetch_factor`: None
241
+ - `past_index`: -1
242
+ - `disable_tqdm`: False
243
+ - `remove_unused_columns`: True
244
+ - `label_names`: None
245
+ - `load_best_model_at_end`: True
246
+ - `ignore_data_skip`: False
247
+ - `fsdp`: []
248
+ - `fsdp_min_num_params`: 0
249
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
250
+ - `fsdp_transformer_layer_cls_to_wrap`: None
251
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
252
+ - `deepspeed`: None
253
+ - `label_smoothing_factor`: 0.0
254
+ - `optim`: adamw_torch
255
+ - `optim_args`: None
256
+ - `adafactor`: False
257
+ - `group_by_length`: False
258
+ - `length_column_name`: length
259
+ - `ddp_find_unused_parameters`: None
260
+ - `ddp_bucket_cap_mb`: None
261
+ - `ddp_broadcast_buffers`: False
262
+ - `dataloader_pin_memory`: True
263
+ - `dataloader_persistent_workers`: False
264
+ - `skip_memory_metrics`: True
265
+ - `use_legacy_prediction_loop`: False
266
+ - `push_to_hub`: False
267
+ - `resume_from_checkpoint`: None
268
+ - `hub_model_id`: None
269
+ - `hub_strategy`: every_save
270
+ - `hub_private_repo`: None
271
+ - `hub_always_push`: False
272
+ - `gradient_checkpointing`: False
273
+ - `gradient_checkpointing_kwargs`: None
274
+ - `include_inputs_for_metrics`: False
275
+ - `include_for_metrics`: []
276
+ - `eval_do_concat_batches`: True
277
+ - `fp16_backend`: auto
278
+ - `push_to_hub_model_id`: None
279
+ - `push_to_hub_organization`: None
280
+ - `mp_parameters`:
281
+ - `auto_find_batch_size`: False
282
+ - `full_determinism`: False
283
+ - `torchdynamo`: None
284
+ - `ray_scope`: last
285
+ - `ddp_timeout`: 1800
286
+ - `torch_compile`: False
287
+ - `torch_compile_backend`: None
288
+ - `torch_compile_mode`: None
289
+ - `include_tokens_per_second`: False
290
+ - `include_num_input_tokens_seen`: False
291
+ - `neftune_noise_alpha`: None
292
+ - `optim_target_modules`: None
293
+ - `batch_eval_metrics`: False
294
+ - `eval_on_start`: False
295
+ - `use_liger_kernel`: False
296
+ - `eval_use_gather_object`: False
297
+ - `average_tokens_across_devices`: False
298
+ - `prompts`: None
299
+ - `batch_sampler`: batch_sampler
300
+ - `multi_dataset_batch_sampler`: proportional
301
+ - `router_mapping`: {}
302
+ - `learning_rate_mapping`: {}
303
+
304
+ </details>
305
+
306
+ ### Training Logs
307
+ | Epoch | Step | Training Loss | Validation Loss |
308
+ |:------:|:----:|:-------------:|:---------------:|
309
+ | 0.0045 | 1 | 0.0007 | - |
310
+ | 0.2242 | 50 | 0.0031 | - |
311
+ | 0.4484 | 100 | 0.0023 | - |
312
+ | 0.6726 | 150 | 0.0029 | - |
313
+ | 0.8969 | 200 | 0.0029 | - |
314
+ | 1.1211 | 250 | 0.0034 | - |
315
+ | 1.3453 | 300 | 0.0029 | - |
316
+ | 1.5695 | 350 | 0.0034 | - |
317
+ | 1.7937 | 400 | 0.0048 | - |
318
+ | 2.0179 | 450 | 0.0064 | - |
319
+ | 2.2422 | 500 | 0.0052 | 0.0395 |
320
+
321
+
322
+ ### Framework Versions
323
+ - Python: 3.10.10
324
+ - Sentence Transformers: 5.0.0
325
+ - Transformers: 4.52.4
326
+ - PyTorch: 2.7.0+cu128
327
+ - Accelerate: 1.9.0
328
+ - Datasets: 3.6.0
329
+ - Tokenizers: 0.21.1
330
+
331
+ ## Citation
332
+
333
+ ### BibTeX
334
+
335
+ #### Sentence Transformers
336
+ ```bibtex
337
+ @inproceedings{reimers-2019-sentence-bert,
338
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
339
+ author = "Reimers, Nils and Gurevych, Iryna",
340
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
341
+ month = "11",
342
+ year = "2019",
343
+ publisher = "Association for Computational Linguistics",
344
+ url = "https://arxiv.org/abs/1908.10084",
345
+ }
346
+ ```
347
+
348
+ <!--
349
+ ## Glossary
350
+
351
+ *Clearly define terms in order to be accessible across audiences.*
352
+ -->
353
+
354
+ <!--
355
+ ## Model Card Authors
356
+
357
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
358
+ -->
359
+
360
+ <!--
361
+ ## Model Card Contact
362
+
363
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
364
+ -->
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertForSequenceClassification"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "embedding_dropout": 0.0,
16
+ "eos_token_id": 50282,
17
+ "global_attn_every_n_layers": 3,
18
+ "global_rope_theta": 160000.0,
19
+ "gradient_checkpointing": false,
20
+ "hidden_activation": "gelu",
21
+ "hidden_size": 768,
22
+ "id2label": {
23
+ "0": "LABEL_0"
24
+ },
25
+ "initializer_cutoff_factor": 2.0,
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 1152,
28
+ "label2id": {
29
+ "LABEL_0": 0
30
+ },
31
+ "layer_norm_eps": 1e-05,
32
+ "local_attention": 128,
33
+ "local_rope_theta": 10000.0,
34
+ "max_position_embeddings": 8192,
35
+ "mlp_bias": false,
36
+ "mlp_dropout": 0.0,
37
+ "model_type": "modernbert",
38
+ "norm_bias": false,
39
+ "norm_eps": 1e-05,
40
+ "num_attention_heads": 12,
41
+ "num_hidden_layers": 22,
42
+ "pad_token_id": 50283,
43
+ "position_embedding_type": "absolute",
44
+ "repad_logits_with_grad": false,
45
+ "sentence_transformers": {
46
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
47
+ "version": "5.0.0"
48
+ },
49
+ "sep_token_id": 50282,
50
+ "sparse_pred_ignore_index": -100,
51
+ "sparse_prediction": false,
52
+ "torch_dtype": "float32",
53
+ "transformers_version": "4.52.4",
54
+ "vocab_size": 50368
55
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bd289c4ec77b5fa46480fbfda4c2ffee8b29fe2ffbec5466ff796f1dfc63b8b
3
+ size 598436708
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:347a6fcb7d9239e1d15fce7b1771c2d954f5aec13547a51df8a45bb6336eff21
3
+ size 1196961739
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:243a4925489c190ee58a88c7361972d99c4762450fc884f52e3e46de42986d61
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad4d35093cde1af968aa653fe59ed06c71e182eeae5add06dcba2a1696f9c44a
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2815c0d98d71c1752edf1e56158a78643505d99b9adb763317f56db13fba11c
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91a8923ce784f0d1596d46d0ce31824c4432ced50ccac53b2eaa2289d383bd17
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55c32d07cb66cc830b633f109ae405bf9f451747291e377d14d8b654944e8472
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8a73c6adaaa388a14609ba29c9003671b41e7f6fd97b0d960e06f7aa4cc5ba3
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd21b528d8b7d76abf247ea00694429c53f6d11ab8158d9071f96c39ab938805
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f59970869f06ddf9a28a0736381e30ba7b2bfb9cba0beb65c41a0e81c4751064
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bc50cd91c9364b8f5f7be52e743b30cf1c0d97c97475282e10e4b9e2abe99a5
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "max_length": 1024,
937
+ "model_input_names": [
938
+ "input_ids",
939
+ "attention_mask"
940
+ ],
941
+ "model_max_length": 1024,
942
+ "pad_to_multiple_of": null,
943
+ "pad_token": "[PAD]",
944
+ "pad_token_type_id": 0,
945
+ "padding_side": "right",
946
+ "sep_token": "[SEP]",
947
+ "stride": 0,
948
+ "tokenizer_class": "PreTrainedTokenizer",
949
+ "truncation_side": "right",
950
+ "truncation_strategy": "longest_first",
951
+ "unk_token": "[UNK]"
952
+ }
trainer_state.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 500,
3
+ "best_metric": 0.03948367014527321,
4
+ "best_model_checkpoint": "/teamspace/studios/this_studio/secure_modern_bert/Models/reranker-securebert2-cmnrl/checkpoint-500",
5
+ "epoch": 2.242152466367713,
6
+ "eval_steps": 500,
7
+ "global_step": 500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.004484304932735426,
14
+ "grad_norm": 3.019306495843921e-05,
15
+ "learning_rate": 0.0,
16
+ "loss": 0.0007,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.2242152466367713,
21
+ "grad_norm": 0.4142322838306427,
22
+ "learning_rate": 4.394618834080718e-06,
23
+ "loss": 0.0031,
24
+ "step": 50
25
+ },
26
+ {
27
+ "epoch": 0.4484304932735426,
28
+ "grad_norm": 0.06909839808940887,
29
+ "learning_rate": 8.878923766816144e-06,
30
+ "loss": 0.0023,
31
+ "step": 100
32
+ },
33
+ {
34
+ "epoch": 0.672645739910314,
35
+ "grad_norm": 3.889437675476074,
36
+ "learning_rate": 1.3363228699551571e-05,
37
+ "loss": 0.0029,
38
+ "step": 150
39
+ },
40
+ {
41
+ "epoch": 0.8968609865470852,
42
+ "grad_norm": 0.008452645502984524,
43
+ "learning_rate": 1.7847533632286997e-05,
44
+ "loss": 0.0029,
45
+ "step": 200
46
+ },
47
+ {
48
+ "epoch": 1.1210762331838564,
49
+ "grad_norm": 0.017008045688271523,
50
+ "learning_rate": 1.974090682610862e-05,
51
+ "loss": 0.0034,
52
+ "step": 250
53
+ },
54
+ {
55
+ "epoch": 1.3452914798206277,
56
+ "grad_norm": 0.12214717268943787,
57
+ "learning_rate": 1.9242650722471353e-05,
58
+ "loss": 0.0029,
59
+ "step": 300
60
+ },
61
+ {
62
+ "epoch": 1.5695067264573992,
63
+ "grad_norm": 0.01061748992651701,
64
+ "learning_rate": 1.8744394618834082e-05,
65
+ "loss": 0.0034,
66
+ "step": 350
67
+ },
68
+ {
69
+ "epoch": 1.7937219730941703,
70
+ "grad_norm": 0.017459532245993614,
71
+ "learning_rate": 1.824613851519681e-05,
72
+ "loss": 0.0048,
73
+ "step": 400
74
+ },
75
+ {
76
+ "epoch": 2.0179372197309418,
77
+ "grad_norm": 0.0639125257730484,
78
+ "learning_rate": 1.7747882411559544e-05,
79
+ "loss": 0.0064,
80
+ "step": 450
81
+ },
82
+ {
83
+ "epoch": 2.242152466367713,
84
+ "grad_norm": 1.5931968688964844,
85
+ "learning_rate": 1.7249626307922273e-05,
86
+ "loss": 0.0052,
87
+ "step": 500
88
+ },
89
+ {
90
+ "epoch": 2.242152466367713,
91
+ "eval_loss": 0.03948367014527321,
92
+ "eval_runtime": 38.1763,
93
+ "eval_samples_per_second": 233.836,
94
+ "eval_steps_per_second": 1.467,
95
+ "step": 500
96
+ }
97
+ ],
98
+ "logging_steps": 50,
99
+ "max_steps": 2230,
100
+ "num_input_tokens_seen": 0,
101
+ "num_train_epochs": 10,
102
+ "save_steps": 500,
103
+ "stateful_callbacks": {
104
+ "TrainerControl": {
105
+ "args": {
106
+ "should_epoch_stop": false,
107
+ "should_evaluate": false,
108
+ "should_log": false,
109
+ "should_save": true,
110
+ "should_training_stop": false
111
+ },
112
+ "attributes": {}
113
+ }
114
+ },
115
+ "total_flos": 0.0,
116
+ "train_batch_size": 20,
117
+ "trial_name": null,
118
+ "trial_params": null
119
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c53fcf7e62c84e8f4247e66c55343aa03d38abe8cd9f386f43ce2f11db8acd3
3
+ size 6161