nicolaebanari tomaarsen HF Staff commited on
Commit
f46d0e6
·
verified ·
1 Parent(s): 271a309

Add new SentenceTransformer model (#1)

Browse files

- Add new SentenceTransformer model (59d572d34328a40d85c9f769983fc4479a954bb8)


Co-authored-by: Tom Aarsen <[email protected]>

1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,10 +1,12 @@
1
  ---
2
  license: mit
3
- language:
4
- - nl
5
  base_model:
6
  - intfloat/multilingual-e5-base
7
  pipeline_tag: sentence-similarity
 
 
 
8
  ---
9
  # E5-base-trm
10
  This model is a trimmed version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size.
@@ -69,14 +71,29 @@ print(scores.tolist())
69
  Below is an example for usage with sentence_transformers.
70
  ```python
71
  from sentence_transformers import SentenceTransformer
72
- model = SentenceTransformer('clips/e5-base-trm')
73
- input_texts = [
74
- 'query: hoeveel eiwitten moet een vrouw eten',
75
- 'query: top definieer',
76
- "passage: Als algemene richtlijn geldt dat de gemiddelde eiwitbehoefte voor vrouwen van 19 tot 70 jaar volgens de CDC 46 gram per dag bedraagt. Maar, zoals je in deze tabel kunt zien, moet je dit verhogen als je zwanger bent of traint voor een marathon. Bekijk de onderstaande tabel om te zien hoeveel eiwitten je dagelijks zou moeten eten.",
77
- "passage: Definitie van top voor leerlingen Engels. : 1 het hoogste punt van een berg : de top van een berg. : 2 het hoogste niveau. : 3 een bijeenkomst of reeks bijeenkomsten tussen de leiders van twee of meer regeringen."
 
 
 
 
 
 
 
 
78
  ]
79
- embeddings = model.encode(input_texts, normalize_embeddings=True)
 
 
 
 
 
 
 
80
  ```
81
  ## Benchmark Evaluation
82
  Results on MTEB-NL (models introduced in [our paper](https://arxiv.org/abs/2509.12340) and the best model per size category are highlighted in bold):
 
1
  ---
2
  license: mit
3
+ language: nl
 
4
  base_model:
5
  - intfloat/multilingual-e5-base
6
  pipeline_tag: sentence-similarity
7
+ library_name: sentence-transformers
8
+ tags:
9
+ - transformers
10
  ---
11
  # E5-base-trm
12
  This model is a trimmed version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size.
 
71
  Below is an example for usage with sentence_transformers.
72
  ```python
73
  from sentence_transformers import SentenceTransformer
74
+
75
+ # Load the model from Hugging Face
76
+ model = SentenceTransformer("clips/e5-base-trm")
77
+
78
+ # Perform inference using encode_query/encode_document for retrieval,
79
+ # or encode_query for general purpose embeddings. Prompt prefixes
80
+ # are automatically added with these two methods.
81
+ queries = [
82
+ 'hoeveel eiwitten moet een vrouw eten',
83
+ 'top definieer',
84
+ ]
85
+ documents = [
86
+ 'Als algemene richtlijn geldt dat de gemiddelde eiwitbehoefte voor vrouwen van 19 tot 70 jaar volgens de CDC 46 gram per dag bedraagt. Maar, zoals je in deze tabel kunt zien, moet je dit verhogen als je zwanger bent of traint voor een marathon. Bekijk de onderstaande tabel om te zien hoeveel eiwitten je dagelijks zou moeten eten.',
87
+ 'Definitie van top voor leerlingen Engels. : 1 het hoogste punt van een berg : de top van een berg. : 2 het hoogste niveau. : 3 een bijeenkomst of reeks bijeenkomsten tussen de leiders van twee of meer regeringen.',
88
  ]
89
+ query_embeddings = model.encode_query(queries)
90
+ document_embeddings = model.encode_document(documents)
91
+ print(query_embeddings.shape, document_embeddings.shape)
92
+ # (2, 768) (2, 768)
93
+
94
+ similarities = model.similarity(query_embeddings, document_embeddings)
95
+ # tensor([[0.9136, 0.7289],
96
+ # [0.7250, 0.8887]])
97
  ```
98
  ## Benchmark Evaluation
99
  Results on MTEB-NL (models introduced in [our paper](https://arxiv.org/abs/2509.12340) and the best model per size category are highlighted in bold):
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.56.1",
6
+ "pytorch": "2.7.1+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "query: ",
10
+ "document": "passage: "
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }