--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation - gymnasium model-index: - name: q-frozen-lake-v1-4x4-no-slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing to the Gymnasium **FrozenLake-v1** reinforcement learning environment. ## Usage ```python model = load_from_hub(repo_id="coding-kelps/q-frozen-lake-v1-4x4-no-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ``` ## References You can find the original source code of the model training in the corresponding [Coding Kelps aquaqym repository](https://github.com/coding-kelps/aquagym).