|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Callable |
|
|
from typing import Optional, Union |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import ( |
|
|
GenericForQuestionAnswering, |
|
|
GenericForSequenceClassification, |
|
|
GenericForTokenClassification, |
|
|
GradientCheckpointingLayer, |
|
|
) |
|
|
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple |
|
|
from transformers.utils.deprecation import deprecate_kwarg |
|
|
from transformers.utils.generic import OutputRecorder, check_model_inputs |
|
|
from .configuration_minimax_m2 import MiniMaxM2Config |
|
|
|
|
|
|
|
|
class MiniMaxM2MLP(nn.Module): |
|
|
def __init__(self, config: MiniMaxM2Config): |
|
|
super().__init__() |
|
|
self.ffn_dim = config.intermediate_size |
|
|
self.hidden_dim = config.hidden_size |
|
|
|
|
|
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
|
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) |
|
|
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
|
|
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) |
|
|
current_hidden_states = self.w2(current_hidden_states) |
|
|
return current_hidden_states |
|
|
|
|
|
|
|
|
class MiniMaxM2Experts(nn.ModuleList): |
|
|
""" |
|
|
ModuleList of experts. |
|
|
""" |
|
|
|
|
|
def __init__(self, config: MiniMaxM2Config): |
|
|
super().__init__() |
|
|
self.top_k = config.num_experts_per_tok |
|
|
self.num_experts = config.num_local_experts |
|
|
for _ in range(self.num_experts): |
|
|
self.append(MiniMaxM2MLP(config)) |
|
|
|
|
|
def forward( |
|
|
self, hidden_states: torch.Tensor, top_k_index: torch.Tensor, top_k_weights: torch.Tensor |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
hidden_states: (batch_size * sequence_length, hidden_dim) |
|
|
selected_experts: (batch_size * sequence_length, top_k) |
|
|
routing_weights: (batch_size * sequence_length, top_k) |
|
|
Returns: |
|
|
(batch_size * sequence_length, hidden_dim) |
|
|
""" |
|
|
final_hidden_states = torch.zeros_like(hidden_states) |
|
|
expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=self.num_experts).permute(2, 1, 0) |
|
|
|
|
|
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() |
|
|
for expert_idx in expert_hit: |
|
|
idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0)) |
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_states.shape[-1]) |
|
|
current_hidden_states = self[expert_idx](current_state) * top_k_weights[top_x, idx, None] |
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
|
return final_hidden_states |
|
|
|
|
|
|
|
|
class MiniMaxM2SparseMoeBlock(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.top_k = config.num_experts_per_tok |
|
|
self.jitter_noise = config.router_jitter_noise |
|
|
self.gate = nn.Linear(config.hidden_size, config.num_local_experts, bias=False) |
|
|
self.experts = MiniMaxM2Experts(config) |
|
|
self.register_buffer("e_score_correction_bias", torch.zeros(config.num_local_experts)) |
|
|
|
|
|
def route_tokens_to_experts(self, router_logits): |
|
|
routing_weights = torch.nn.functional.sigmoid(router_logits.float()) |
|
|
scores_for_choice = routing_weights + self.e_score_correction_bias |
|
|
_, top_k_index = torch.topk(scores_for_choice, self.top_k, dim=-1, sorted=False) |
|
|
top_k_weights = routing_weights.gather(1, top_k_index) |
|
|
top_k_weights /= top_k_weights.sum(dim=-1, keepdim=True) |
|
|
return top_k_index, top_k_weights.to(router_logits.dtype) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
|
if self.training and self.jitter_noise > 0: |
|
|
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) |
|
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) |
|
|
router_logits = self.gate(hidden_states) |
|
|
top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits) |
|
|
hidden_states = self.experts(hidden_states, top_k_index, top_k_weights.to(hidden_states.dtype)) |
|
|
hidden_states = hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
|
return hidden_states, router_logits |
|
|
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class MiniMaxM2RMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
MiniMaxM2RMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
|
|
|
|
|
|
rotary_dim = cos.shape[-1] |
|
|
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] |
|
|
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] |
|
|
|
|
|
|
|
|
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin) |
|
|
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin) |
|
|
|
|
|
|
|
|
q_embed = torch.cat([q_embed, q_pass], dim=-1) |
|
|
k_embed = torch.cat([k_embed, k_pass], dim=-1) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class MiniMaxM2Attention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: MiniMaxM2Config, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) |
|
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
|
|
self.use_qk_norm = config.use_qk_norm |
|
|
if self.use_qk_norm: |
|
|
self.q_norm = MiniMaxM2RMSNorm(self.head_dim * config.num_attention_heads, eps=config.rms_norm_eps) |
|
|
self.k_norm = MiniMaxM2RMSNorm(self.head_dim * config.num_key_value_heads, eps=config.rms_norm_eps) |
|
|
|
|
|
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
if self.use_qk_norm: |
|
|
query_states = self.q_norm(query_states) |
|
|
key_states = self.k_norm(key_states) |
|
|
|
|
|
key_states = key_states.view(hidden_shape) |
|
|
query_states = query_states.view(hidden_shape) |
|
|
value_states = value_states.view(hidden_shape) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_values is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class MiniMaxM2DecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: MiniMaxM2Config, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = MiniMaxM2Attention(config, layer_idx) |
|
|
|
|
|
self.block_sparse_moe = MiniMaxM2SparseMoeBlock(config) |
|
|
self.input_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> torch.FloatTensor: |
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, _ = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
position_embeddings=position_embeddings, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states, _ = self.block_sparse_moe(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class MiniMaxM2RotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, config: MiniMaxM2Config, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class MiniMaxM2PreTrainedModel(PreTrainedModel): |
|
|
config: MiniMaxM2Config |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["MiniMaxM2DecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_can_compile_fullgraph = False |
|
|
_supports_attention_backend = True |
|
|
_can_record_outputs = { |
|
|
"router_logits": OutputRecorder(MiniMaxM2SparseMoeBlock, index=1), |
|
|
"hidden_states": MiniMaxM2DecoderLayer, |
|
|
"attentions": MiniMaxM2Attention, |
|
|
} |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class MiniMaxM2Model(MiniMaxM2PreTrainedModel): |
|
|
def __init__(self, config: MiniMaxM2Config): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[MiniMaxM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = MiniMaxM2RotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@check_model_inputs |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> MoeModelOutputWithPast: |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache(config=self.config) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask |
|
|
causal_mask = mask_function( |
|
|
config=self.config, |
|
|
input_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
cache_position=cache_position, |
|
|
past_key_values=past_key_values, |
|
|
position_ids=position_ids, |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
hidden_states = decoder_layer( |
|
|
hidden_states, |
|
|
position_embeddings=position_embeddings, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
return MoeModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values, |
|
|
) |
|
|
|
|
|
|
|
|
def load_balancing_loss_func( |
|
|
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None], |
|
|
num_experts: Optional[int] = None, |
|
|
top_k=2, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
) -> Union[torch.Tensor, int]: |
|
|
r""" |
|
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
|
|
See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss |
|
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
|
experts is too unbalanced. |
|
|
|
|
|
Args: |
|
|
gate_logits: |
|
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of |
|
|
shape [batch_size X sequence_length, num_experts]. |
|
|
num_experts: |
|
|
Number of experts |
|
|
top_k: |
|
|
The number of experts to route per-token, can be also interpreted as the `top-k` routing |
|
|
parameter. |
|
|
attention_mask (`torch.Tensor`, *optional*): |
|
|
The attention_mask used in forward function |
|
|
shape [batch_size X sequence_length] if not None. |
|
|
|
|
|
Returns: |
|
|
The auxiliary loss. |
|
|
""" |
|
|
if gate_logits is None or not isinstance(gate_logits, tuple): |
|
|
return 0 |
|
|
|
|
|
if isinstance(gate_logits, tuple): |
|
|
compute_device = gate_logits[0].device |
|
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) |
|
|
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) |
|
|
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
|
|
if attention_mask is None: |
|
|
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
|
else: |
|
|
batch_size, sequence_length = attention_mask.shape |
|
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) |
|
|
|
|
|
|
|
|
expert_attention_mask = ( |
|
|
attention_mask[None, :, :, None, None] |
|
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) |
|
|
.reshape(-1, top_k, num_experts) |
|
|
.to(compute_device) |
|
|
) |
|
|
|
|
|
|
|
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( |
|
|
expert_attention_mask, dim=0 |
|
|
) |
|
|
|
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
|
attention_mask[None, :, :, None] |
|
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) |
|
|
.reshape(-1, num_experts) |
|
|
.to(compute_device) |
|
|
) |
|
|
|
|
|
|
|
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( |
|
|
router_per_expert_attention_mask, dim=0 |
|
|
) |
|
|
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) |
|
|
return overall_loss * num_experts |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class MiniMaxM2ForCausalLM(MiniMaxM2PreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = MiniMaxM2Model(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
|
self.num_experts = config.num_local_experts |
|
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_router_logits: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> MoeCausalLMOutputWithPast: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer, MiniMaxM2ForCausalLM |
|
|
|
|
|
>>> model = MiniMaxM2ForCausalLM.from_pretrained("mistralai/MiniMaxM2-8x7B-v0.1") |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/MiniMaxM2-8x7B-v0.1") |
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
>>> # Generate |
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
```""" |
|
|
|
|
|
output_router_logits = ( |
|
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
|
) |
|
|
|
|
|
|
|
|
outputs: MoeModelOutputWithPast = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_router_logits=output_router_logits, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) |
|
|
|
|
|
aux_loss = None |
|
|
if output_router_logits: |
|
|
aux_loss = load_balancing_loss_func( |
|
|
outputs.router_logits, |
|
|
self.num_experts, |
|
|
self.num_experts_per_tok, |
|
|
attention_mask, |
|
|
) |
|
|
if labels is not None: |
|
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) |
|
|
|
|
|
return MoeCausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
aux_loss=aux_loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
router_logits=outputs.router_logits, |
|
|
) |
|
|
|
|
|
|
|
|
class MiniMaxM2ForSequenceClassification(GenericForSequenceClassification, MiniMaxM2PreTrainedModel): |
|
|
pass |
|
|
|
|
|
|
|
|
class MiniMaxM2ForTokenClassification(GenericForTokenClassification, MiniMaxM2PreTrainedModel): |
|
|
pass |
|
|
|
|
|
|
|
|
class MiniMaxM2ForQuestionAnswering(GenericForQuestionAnswering, MiniMaxM2PreTrainedModel): |
|
|
pass |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"MiniMaxM2ForCausalLM", |
|
|
"MiniMaxM2ForQuestionAnswering", |
|
|
"MiniMaxM2Model", |
|
|
"MiniMaxM2PreTrainedModel", |
|
|
"MiniMaxM2ForSequenceClassification", |
|
|
"MiniMaxM2ForTokenClassification", |
|
|
] |
|
|
|