amsa02 commited on
Commit
ef94b7e
·
verified ·
1 Parent(s): 95a8f49

Create readme

Browse files
Files changed (1) hide show
  1. readme +171 -0
readme ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ language:
4
+ - en
5
+ license: cc-by-4.0
6
+ size_categories:
7
+ - 10K<n<100K
8
+ tasks:
9
+ - named-entity-recognition
10
+ - token-classification
11
+ pretty_name: COPIOUS
12
+ tags:
13
+ - named-entity-recognition
14
+ - biodiversity
15
+ - species-occurrence
16
+ configs:
17
+ - config_name: default
18
+ data_files:
19
+ - split: train
20
+ path: train.jsonl
21
+ - split: validation
22
+ path: dev.jsonl
23
+ - split: test
24
+ path: test.jsonl
25
+ ---
26
+
27
+ # Dataset Card for COPIOUS
28
+
29
+ ## Table of Contents
30
+ - [Dataset Description](#dataset-description)
31
+ - [Dataset Summary](#dataset-summary)
32
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
33
+ - [Languages](#languages)
34
+ - [Dataset Structure](#dataset-structure)
35
+ - [Data Instances](#data-instances)
36
+ - [Data Fields](#data-fields)
37
+ - [Data Splits](#data-splits)
38
+ - [Dataset Creation](#dataset-creation)
39
+ - [Curation Rationale](#curation-rationale)
40
+ - [Source Data](#source-data)
41
+ - [Annotations](#annotations)
42
+ - [Format Conversion](#format-conversion)
43
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
44
+ - [Social Impact of Dataset](#social-impact-of-dataset)
45
+ - [Other Known Limitations](#other-known-limitations)
46
+ - [Additional Information](#additional-information)
47
+ - [Dataset Curators](#dataset-curators)
48
+ - [Licensing Information](#licensing-information)
49
+ - [Citation Information](#citation-information)
50
+
51
+ ## Dataset Description
52
+
53
+ - **Homepage:** [COPIOUS: A gold standard corpus of named entities... (Biodiversity Data Journal)](https://doi.org/10.3897/BDJ.7.e29626)
54
+ - **Paper:** [COPIOUS: A gold standard corpus of named entities towards extracting species occurrence from biodiversity literature](https://doi.org/10.3897/BDJ.7.e29626)
55
+ - **Point of Contact:** [Sophia Ananiadou](mailto:[email protected])
56
+
57
+ ### Dataset Summary
58
+
59
+ Species occurrence records are critical in the biodiversity domain. However, a key challenge has been the lack of a single, consolidated corpus that includes all the entity types needed to extract this information from scientific literature. To address this gap, the **COPIOUS corpus** (Corpus of named entities towards extracting Species Occurrence) was created.
60
+
61
+ This dataset serves as a gold standard, annotated with a wide range of entities relevant to biodiversity science. It was developed as part of the broader COPIOUS project, which aims to build a knowledge repository of Philippine biodiversity by applying text mining to scientific texts. The corpus is manually annotated with five key entity categories: **Taxon**, **Geographical Location**, **Habitat**, **Temporal Expression**, and **Person** names.
62
+
63
+ ### Supported Tasks and Leaderboards
64
+
65
+ - **Tasks:** Named Entity Recognition, Token Classification
66
+ - **Leaderboards:** N/A
67
+
68
+ ### Languages
69
+
70
+ The text in the dataset is in English.
71
+
72
+ ## Dataset Structure
73
+
74
+ ### Data Instances
75
+
76
+ An example from the `train` split:
77
+
78
+ ```json
79
+ {
80
+ "id": "100785_English_120409_32367238_1954",
81
+ "tokens": ["FAMILY", "SERRANIDAE", "—", "SCHULTZ", "..."],
82
+ "ner_tags": [0, 1, 0, 0, ...]
83
+ }
84
+ ```
85
+
86
+ ### Data Fields
87
+
88
+ - `id`: A unique identifier for the example (string).
89
+ - `tokens`: A list of tokens (list of strings).
90
+ - `ner_tags`: A list of integer IDs corresponding to the NER tags. The mapping is:
91
+
92
+ ```json
93
+ {
94
+ "0": "O",
95
+ "1": "B-Taxon",
96
+ "2": "I-Taxon",
97
+ "3": "B-Geographical_Location",
98
+ "4": "I-Geographical_Location",
99
+ "5": "B-Habitat",
100
+ "6": "I-Habitat",
101
+ "7": "B-Temporal_Expression",
102
+ "8": "I-Temporal_Expression",
103
+ "9": "B-Person",
104
+ "10": "I-Person"
105
+ }
106
+ ```
107
+
108
+ ### Data Splits
109
+
110
+ The corpus consists of 668 documents split as follows:
111
+
112
+ | Split | Documents |
113
+ |-----------|-----------|
114
+ | train | 534 |
115
+ | validation| 67 |
116
+ | test | 67 |
117
+
118
+ ## Dataset Creation
119
+
120
+ ### Curation Rationale
121
+
122
+ The corpus was created to be a sufficiently reliable and sizeable resource for training and evaluating Named Entity Recognition (NER) tools in the biodiversity domain, specifically for the task of species occurrence extraction.
123
+
124
+ ### Source Data
125
+
126
+ The data consists of 668 documents randomly selected from over 169,000 English-language pages downloaded from the Biodiversity Heritage Library (BHL).
127
+
128
+ ### Annotations
129
+
130
+ The dataset was manually annotated by two experts in biology using the Argo workbench. 200 documents were double-annotated to ensure quality, achieving an overall Inter-Annotator Agreement (IAA) of 81.86% F-score.
131
+
132
+ ### Format Conversion
133
+
134
+ For this Hugging Face Hub version, the dataset was prepared as follows:
135
+ - **Local Sourcing:** The data was sourced from a local copy because the original download link on the NaCTeM website was inactive.
136
+ - **Conversion to JSONL:** The original data was annotated in the Brat Standoff Format (.txt + .ann files). It has been converted to the standard JSON Lines (.jsonl) format to align with Hugging Face Hub standards.
137
+
138
+ ## Considerations for Using the Data
139
+
140
+ ### Social Impact of Dataset
141
+
142
+ This corpus can be used to develop text mining tools that automatically locate species occurrences in literature, which is useful for monitoring species distribution and preserving biodiversity.
143
+
144
+ ### Other Known Limitations
145
+
146
+ - **Annotation Complexity:** The IAA for the Habitat entity type was the lowest (47.07% F-score), indicating this category is complex and challenging for both human annotators and automated systems.
147
+ - **Source Text Quality:** The source documents from BHL contain a large number of OCR errors, which may adversely affect the performance of NER models trained on this data.
148
+
149
+ ## Additional Information
150
+
151
+ ### Dataset Curators
152
+
153
+ Nhung T.H. Nguyen, Roselyn S. Gabud, and Sophia Ananiadou.
154
+
155
+ ### Licensing Information
156
+
157
+ The dataset is distributed under the Creative Commons Attribution License (CC BY 4.0).
158
+
159
+ ### Citation Information
160
+
161
+ ```bibtex
162
+ @article{nguyen2019copious,
163
+ author = {Nguyen, Nhung T.H. and Gabud, Roselyn S. and Ananiadou, Sophia},
164
+ title = {{COPIOUS: A gold standard corpus of named entities towards extracting species occurrence from biodiversity literature}},
165
+ journal = {Biodiversity Data Journal},
166
+ volume = {7},
167
+ pages = {e29626},
168
+ year = {2019},
169
+ doi = {10.3897/BDJ.7.e29626}
170
+ }
171
+ ```