Update coqa.py
Browse files
coqa.py
CHANGED
|
@@ -1,22 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
-
CoQA: A Conversational Question Answering Challenge
|
| 3 |
-
https://arxiv.org/pdf/1808.07042.pdf
|
| 4 |
|
| 5 |
-
CoQA is a large-scale dataset for building Conversational Question Answering
|
| 6 |
-
systems. The goal of the CoQA challenge is to measure the ability of machines to
|
| 7 |
-
understand a text passage and answer a series of interconnected questions that
|
| 8 |
-
appear in a conversation.
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
import
|
| 13 |
-
import transformers.data.metrics.squad_metrics as squad_metrics
|
| 14 |
-
import lm_eval.datasets.coqa.coqa
|
| 15 |
-
from lm_eval.base import Task, rf, mean
|
| 16 |
-
from itertools import zip_longest
|
| 17 |
|
| 18 |
|
| 19 |
-
_CITATION = """
|
| 20 |
@misc{reddy2018coqa,
|
| 21 |
title={CoQA: A Conversational Question Answering Challenge},
|
| 22 |
author={Siva Reddy and Danqi Chen and Christopher D. Manning},
|
|
@@ -27,152 +35,211 @@ _CITATION = """
|
|
| 27 |
}
|
| 28 |
"""
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
VERSION = 1
|
| 33 |
-
DATASET_PATH = inspect.getfile(lm_eval.datasets.coqa.coqa)
|
| 34 |
-
DATASET_NAME = None
|
| 35 |
-
|
| 36 |
-
def has_training_docs(self):
|
| 37 |
-
return True
|
| 38 |
-
|
| 39 |
-
def has_validation_docs(self):
|
| 40 |
-
return True
|
| 41 |
-
|
| 42 |
-
def has_test_docs(self):
|
| 43 |
-
return False
|
| 44 |
-
|
| 45 |
-
def training_docs(self):
|
| 46 |
-
return self.dataset["train"]
|
| 47 |
-
|
| 48 |
-
def validation_docs(self):
|
| 49 |
-
return self.dataset["validation"]
|
| 50 |
-
|
| 51 |
-
def test_docs(self):
|
| 52 |
-
pass
|
| 53 |
-
|
| 54 |
-
def doc_to_text(self, doc):
|
| 55 |
-
# Given a passage p, the conversation history {q1, a1, . . . qi−1, ai−1}
|
| 56 |
-
# and a question qi, the task is to predict the answer ai
|
| 57 |
-
doc_text = doc["story"] + "\n\n"
|
| 58 |
-
for (q, a) in zip_longest(
|
| 59 |
-
doc["questions"]["input_text"], doc["answers"]["input_text"][:-1]
|
| 60 |
-
): # omit target answer ai
|
| 61 |
-
question = f"Q: {q}\n\n"
|
| 62 |
-
answer = f"A: {a}\n\n" if a is not None else "A:"
|
| 63 |
-
doc_text += question + answer
|
| 64 |
-
return doc_text
|
| 65 |
-
|
| 66 |
-
def should_decontaminate(self):
|
| 67 |
-
return True
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
answer_forturn = doc["answers"]["input_text"][turn_id - 1]
|
| 77 |
-
answers.append(answer_forturn)
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
@classmethod
|
| 90 |
-
def get_answer_choice(self, raw_text):
|
| 91 |
-
# Function maps answers to CoQA answer categories
|
| 92 |
-
# ~ 1/5 of the CoQA answers are Yes/No
|
| 93 |
-
# ~ 2/3 of the CoQA answers are span-based
|
| 94 |
-
# (answers overlap with the passage ignoring punctuation and case mismatch)
|
| 95 |
-
if raw_text == "unknown":
|
| 96 |
-
return "0"
|
| 97 |
-
if squad_metrics.normalize_answer(raw_text) == "yes":
|
| 98 |
-
return "1"
|
| 99 |
-
if squad_metrics.normalize_answer(raw_text) == "no":
|
| 100 |
-
return "2"
|
| 101 |
-
return "3" # Not a yes/no question
|
| 102 |
-
|
| 103 |
-
@staticmethod
|
| 104 |
-
def compute_scores(gold_list, pred):
|
| 105 |
-
# tests for exact match and on the normalised answer (compute_exact)
|
| 106 |
-
# test for overlap (compute_f1)
|
| 107 |
-
f1_sum = 0.0
|
| 108 |
-
em_sum = 0.0
|
| 109 |
-
if len(gold_list) > 1:
|
| 110 |
-
for i in range(len(gold_list)):
|
| 111 |
-
gold_answers = gold_list[0:i] + gold_list[i + 1 :]
|
| 112 |
-
# predictions compared against (n) golds and take maximum
|
| 113 |
-
em_sum += max(
|
| 114 |
-
squad_metrics.compute_exact(a, pred) for a in gold_answers
|
| 115 |
-
)
|
| 116 |
-
f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_answers)
|
| 117 |
-
else:
|
| 118 |
-
em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list)
|
| 119 |
-
f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_list)
|
| 120 |
-
|
| 121 |
-
return {
|
| 122 |
-
"em": em_sum / max(1, len(gold_list)),
|
| 123 |
-
"f1": f1_sum / max(1, len(gold_list)),
|
| 124 |
}
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
def construct_requests(self, doc, ctx):
|
| 134 |
-
"""Uses RequestFactory to construct Requests and returns an iterable of
|
| 135 |
-
Requests which will be sent to the LM.
|
| 136 |
-
|
| 137 |
-
:param doc:
|
| 138 |
-
The document as returned from training_docs, validation_docs, or test_docs.
|
| 139 |
-
:param ctx: str
|
| 140 |
-
The context string, generated by fewshot_context. This includes the natural
|
| 141 |
-
language description, as well as the few shot examples, and the question
|
| 142 |
-
part of the document for `doc`.
|
| 143 |
-
"""
|
| 144 |
-
cont_request = rf.greedy_until(ctx, {"until": ["\nQ:"]})
|
| 145 |
-
return cont_request
|
| 146 |
-
|
| 147 |
-
def process_results(self, doc, results):
|
| 148 |
-
"""Take a single document and the LM results and evaluates, returning a
|
| 149 |
-
dict where keys are the names of submetrics and values are the values of
|
| 150 |
-
the metric for that one document
|
| 151 |
-
|
| 152 |
-
:param doc:
|
| 153 |
-
The document as returned from training_docs, validation_docs, or test_docs.
|
| 154 |
-
:param results:
|
| 155 |
-
The results of the requests created in construct_requests.
|
| 156 |
-
"""
|
| 157 |
-
turn_id = len(doc["questions"]["input_text"])
|
| 158 |
-
gold_list = self.get_answers(doc, turn_id)
|
| 159 |
-
pred = results[0].strip().split("\n")[0]
|
| 160 |
-
|
| 161 |
-
scores = self.compute_scores(gold_list, pred)
|
| 162 |
-
|
| 163 |
-
return {
|
| 164 |
-
"f1": scores["f1"],
|
| 165 |
-
"em": scores["em"],
|
| 166 |
}
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
"
|
| 171 |
-
"
|
|
|
|
|
|
|
|
|
|
| 172 |
}
|
|
|
|
|
|
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""CoQA dataset.
|
| 15 |
+
|
| 16 |
+
This `CoQA` adds the "additional_answers" feature that's missing in the original
|
| 17 |
+
datasets version:
|
| 18 |
+
https://github.com/huggingface/datasets/blob/master/datasets/coqa/coqa.py
|
| 19 |
"""
|
|
|
|
|
|
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
import json
|
| 23 |
+
|
| 24 |
+
import datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
+
_CITATION = """\
|
| 28 |
@misc{reddy2018coqa,
|
| 29 |
title={CoQA: A Conversational Question Answering Challenge},
|
| 30 |
author={Siva Reddy and Danqi Chen and Christopher D. Manning},
|
|
|
|
| 35 |
}
|
| 36 |
"""
|
| 37 |
|
| 38 |
+
_DESCRIPTION = """\
|
| 39 |
+
CoQA is a large-scale dataset for building Conversational Question Answering
|
| 40 |
+
systems. The goal of the CoQA challenge is to measure the ability of machines to
|
| 41 |
+
understand a text passage and answer a series of interconnected questions that
|
| 42 |
+
appear in a conversation.
|
| 43 |
+
"""
|
| 44 |
|
| 45 |
+
_HOMEPAGE = "https://stanfordnlp.github.io/coqa/"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# TODO: Add the licence for the dataset here if you can find it
|
| 48 |
+
_LICENSE = ""
|
| 49 |
|
| 50 |
+
_URLS = {
|
| 51 |
+
"train": "https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json",
|
| 52 |
+
"validation": "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json",
|
| 53 |
+
}
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# `additional_answers` are not available in the train set so we fill them with
|
| 56 |
+
# empty dicts of the same form.
|
| 57 |
+
_EMPTY_ADDITIONAL_ANSWER = {
|
| 58 |
+
"0": [
|
| 59 |
+
{
|
| 60 |
+
"span_start": -1,
|
| 61 |
+
"span_end": -1,
|
| 62 |
+
"span_text": "",
|
| 63 |
+
"input_text": "",
|
| 64 |
+
"turn_id": -1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
}
|
| 66 |
+
],
|
| 67 |
+
"1": [
|
| 68 |
+
{
|
| 69 |
+
"span_start": -1,
|
| 70 |
+
"span_end": -1,
|
| 71 |
+
"span_text": "",
|
| 72 |
+
"input_text": "",
|
| 73 |
+
"turn_id": -1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
}
|
| 75 |
+
],
|
| 76 |
+
"2": [
|
| 77 |
+
{
|
| 78 |
+
"span_start": -1,
|
| 79 |
+
"span_end": -1,
|
| 80 |
+
"span_text": "",
|
| 81 |
+
"input_text": "",
|
| 82 |
+
"turn_id": -1,
|
| 83 |
}
|
| 84 |
+
],
|
| 85 |
+
}
|
| 86 |
|
| 87 |
+
|
| 88 |
+
class Coqa(datasets.GeneratorBasedBuilder):
|
| 89 |
+
"""CoQA is a large-scale dataset for building Conversational Question Answering systems."""
|
| 90 |
+
|
| 91 |
+
VERSION = datasets.Version("0.0.1")
|
| 92 |
+
|
| 93 |
+
BUILDER_CONFIGS = [
|
| 94 |
+
datasets.BuilderConfig(
|
| 95 |
+
name="coqa", version=VERSION, description="The CoQA dataset."
|
| 96 |
+
),
|
| 97 |
+
]
|
| 98 |
+
|
| 99 |
+
def _info(self):
|
| 100 |
+
features = datasets.Features(
|
| 101 |
+
{
|
| 102 |
+
"id": datasets.Value("string"),
|
| 103 |
+
"source": datasets.Value("string"),
|
| 104 |
+
"story": datasets.Value("string"),
|
| 105 |
+
"questions": datasets.features.Sequence(
|
| 106 |
+
{
|
| 107 |
+
"input_text": datasets.Value("string"),
|
| 108 |
+
"turn_id": datasets.Value("int32"),
|
| 109 |
+
}
|
| 110 |
+
),
|
| 111 |
+
"answers": datasets.features.Sequence(
|
| 112 |
+
{
|
| 113 |
+
"span_start": datasets.Value("int32"),
|
| 114 |
+
"span_end": datasets.Value("int32"),
|
| 115 |
+
"span_text": datasets.Value("string"),
|
| 116 |
+
"input_text": datasets.Value("string"),
|
| 117 |
+
"turn_id": datasets.Value("int32"),
|
| 118 |
+
}
|
| 119 |
+
),
|
| 120 |
+
"additional_answers": {
|
| 121 |
+
"0": datasets.features.Sequence(
|
| 122 |
+
{
|
| 123 |
+
"span_start": datasets.Value("int32"),
|
| 124 |
+
"span_end": datasets.Value("int32"),
|
| 125 |
+
"span_text": datasets.Value("string"),
|
| 126 |
+
"input_text": datasets.Value("string"),
|
| 127 |
+
"turn_id": datasets.Value("int32"),
|
| 128 |
+
}
|
| 129 |
+
),
|
| 130 |
+
"1": datasets.features.Sequence(
|
| 131 |
+
{
|
| 132 |
+
"span_start": datasets.Value("int32"),
|
| 133 |
+
"span_end": datasets.Value("int32"),
|
| 134 |
+
"span_text": datasets.Value("string"),
|
| 135 |
+
"input_text": datasets.Value("string"),
|
| 136 |
+
"turn_id": datasets.Value("int32"),
|
| 137 |
+
}
|
| 138 |
+
),
|
| 139 |
+
"2": datasets.features.Sequence(
|
| 140 |
+
{
|
| 141 |
+
"span_start": datasets.Value("int32"),
|
| 142 |
+
"span_end": datasets.Value("int32"),
|
| 143 |
+
"span_text": datasets.Value("string"),
|
| 144 |
+
"input_text": datasets.Value("string"),
|
| 145 |
+
"turn_id": datasets.Value("int32"),
|
| 146 |
+
}
|
| 147 |
+
),
|
| 148 |
+
},
|
| 149 |
+
}
|
| 150 |
+
)
|
| 151 |
+
return datasets.DatasetInfo(
|
| 152 |
+
description=_DESCRIPTION,
|
| 153 |
+
features=features,
|
| 154 |
+
homepage=_HOMEPAGE,
|
| 155 |
+
license=_LICENSE,
|
| 156 |
+
citation=_CITATION,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
def _split_generators(self, dl_manager):
|
| 160 |
+
urls = {"train": _URLS["train"], "validation": _URLS["validation"]}
|
| 161 |
+
data_dirs = dl_manager.download_and_extract(urls)
|
| 162 |
+
return [
|
| 163 |
+
datasets.SplitGenerator(
|
| 164 |
+
name=datasets.Split.TRAIN,
|
| 165 |
+
# These kwargs will be passed to _generate_examples
|
| 166 |
+
gen_kwargs={
|
| 167 |
+
"filepath": data_dirs["train"],
|
| 168 |
+
"split": datasets.Split.TRAIN,
|
| 169 |
+
},
|
| 170 |
+
),
|
| 171 |
+
datasets.SplitGenerator(
|
| 172 |
+
name=datasets.Split.VALIDATION,
|
| 173 |
+
# These kwargs will be passed to _generate_examples
|
| 174 |
+
gen_kwargs={
|
| 175 |
+
"filepath": data_dirs["validation"],
|
| 176 |
+
"split": datasets.Split.VALIDATION,
|
| 177 |
+
},
|
| 178 |
+
),
|
| 179 |
+
]
|
| 180 |
+
|
| 181 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 182 |
+
def _generate_examples(self, filepath, split):
|
| 183 |
+
with open(filepath, encoding="utf-8") as f:
|
| 184 |
+
data = json.load(f)
|
| 185 |
+
for row in data["data"]:
|
| 186 |
+
id = row["id"]
|
| 187 |
+
source = row["source"]
|
| 188 |
+
story = row["story"]
|
| 189 |
+
questions = [
|
| 190 |
+
{"input_text": q["input_text"], "turn_id": q["turn_id"]}
|
| 191 |
+
for q in row["questions"]
|
| 192 |
+
]
|
| 193 |
+
answers = [
|
| 194 |
+
{
|
| 195 |
+
"span_start": a["span_start"],
|
| 196 |
+
"span_end": a["span_end"],
|
| 197 |
+
"span_text": a["span_text"],
|
| 198 |
+
"input_text": a["input_text"],
|
| 199 |
+
"turn_id": a["turn_id"],
|
| 200 |
+
}
|
| 201 |
+
for a in row["answers"]
|
| 202 |
+
]
|
| 203 |
+
if split == datasets.Split.TRAIN:
|
| 204 |
+
additional_answers = _EMPTY_ADDITIONAL_ANSWER
|
| 205 |
+
else:
|
| 206 |
+
additional_answers = {
|
| 207 |
+
"0": [
|
| 208 |
+
{
|
| 209 |
+
"span_start": a0["span_start"],
|
| 210 |
+
"span_end": a0["span_end"],
|
| 211 |
+
"span_text": a0["span_text"],
|
| 212 |
+
"input_text": a0["input_text"],
|
| 213 |
+
"turn_id": a0["turn_id"],
|
| 214 |
+
}
|
| 215 |
+
for a0 in row["additional_answers"]["0"]
|
| 216 |
+
],
|
| 217 |
+
"1": [
|
| 218 |
+
{
|
| 219 |
+
"span_start": a1["span_start"],
|
| 220 |
+
"span_end": a1["span_end"],
|
| 221 |
+
"span_text": a1["span_text"],
|
| 222 |
+
"input_text": a1["input_text"],
|
| 223 |
+
"turn_id": a1["turn_id"],
|
| 224 |
+
}
|
| 225 |
+
for a1 in row["additional_answers"]["1"]
|
| 226 |
+
],
|
| 227 |
+
"2": [
|
| 228 |
+
{
|
| 229 |
+
"span_start": a2["span_start"],
|
| 230 |
+
"span_end": a2["span_end"],
|
| 231 |
+
"span_text": a2["span_text"],
|
| 232 |
+
"input_text": a2["input_text"],
|
| 233 |
+
"turn_id": a2["turn_id"],
|
| 234 |
+
}
|
| 235 |
+
for a2 in row["additional_answers"]["2"]
|
| 236 |
+
],
|
| 237 |
+
}
|
| 238 |
+
yield row["id"], {
|
| 239 |
+
"id": id,
|
| 240 |
+
"story": story,
|
| 241 |
+
"source": source,
|
| 242 |
+
"questions": questions,
|
| 243 |
+
"answers": answers,
|
| 244 |
+
"additional_answers": additional_answers,
|
| 245 |
+
}
|