Francis2003 commited on
Commit
edc41f9
·
verified ·
1 Parent(s): 690712a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +177 -177
README.md CHANGED
@@ -1,177 +1,177 @@
1
- ---
2
- language: en
3
- license: cc-by-nc-4.0
4
- tags:
5
- - movies
6
- - screenplays
7
- - oscar
8
- - text-classification
9
- - embeddings
10
- size_categories:
11
- - 1K<n<10K
12
- task_categories:
13
- - text-classification
14
- pretty_name: Movie-O-Label
15
- dataset_info:
16
- features:
17
- - name: movie_name
18
- dtype: string
19
- - name: imdb_id
20
- dtype: string
21
- - name: title
22
- dtype: string
23
- - name: year
24
- dtype: int64
25
- - name: summary
26
- dtype: string
27
- - name: script
28
- dtype: string
29
- - name: script_plain
30
- dtype: string
31
- - name: script_clean
32
- dtype: string
33
- - name: nominated
34
- dtype: int64
35
- - name: winner
36
- dtype: int64
37
- ---
38
-
39
-
40
-
41
-
42
-
43
- # Movie-O-Label
44
-
45
- **Movie-O-Label** is a dataset created by merging the [MovieSum](https://huggingface.co/datasets/rohitsaxena/MovieSum) screenplay collection with Oscar nomination labels derived from [David V. Lu!!’s Oscar Data](https://github.com/DLu/oscar_data).
46
- It provides **screenplays, summaries, and metadata** together with binary labels indicating whether a movie’s screenplay received an **Oscar nomination** and whether it **won**.
47
-
48
- ---
49
-
50
- ## Contents
51
-
52
- Each entry includes:
53
-
54
-
55
- | column | type | description |
56
- |-----------------|---------|-----------------------------------------------------------------------------|
57
- | `movie_name` | string | Title and year combined, e.g. `The Social Network_2010` |
58
- | `title` | string | Movie title |
59
- | `year` | int | Release year |
60
- | `imdb_id` | string | IMDb identifier (e.g. `tt1285016`) |
61
- | `summary` | string | Plot summary of the movie |
62
- | `script_clean` | string | script_plain cleaned (unicode normaliziation, stage directions and scene transitions stripped where possible, whitespace reduced)|
63
- | `script_plain` | string | Original screenplay text (only xml-tags removed from script) |
64
- | `script` | string | Raw script field from MovieSum (for reference) |
65
- | `nominated` | int | `1` if the screenplay was nominated for an Academy Award (Writing) |
66
- | `winner` | int | `1` if the screenplay won an Academy Award (Writing) |
67
-
68
- ---
69
-
70
- ## Splits
71
-
72
- The dataset is provided as a **`DatasetDict`** with:
73
-
74
- - `train` — 60% (1320 movies)
75
- - `validation` — 20% (440 movies)
76
- - `test` — 20% (440 movies)
77
-
78
- Splits were created **stratified** by the `nominated` label to preserve class balance.
79
-
80
- A file `split_60_20_20.npz` with the exact index arrays (`idx_train`, `idx_val`, `idx_test`) is also provided for full reproducibility.
81
-
82
- ---
83
-
84
- ## Additional Resources
85
-
86
- To fully reproduce the experiments described in the paper:
87
-
88
- - [Paper (PDF)](./assets/FrancisGross_PredictionNominatedScreenplays_2025.pdf)
89
- - [Fixed Train/Validation/Test split (split_60_20_20.npz)](./assets/splits/split_60_20_20.npz)
90
- - [Script embeddings (emb_script.joblib)](./assets/embeddings/emb_script.joblib)
91
- - [Summary embeddings (emb_summary.joblib)](./assets/embeddings/emb_summary.joblib)
92
- - [Title embeddings (emb_title.joblib)](./assets/embeddings/emb_title.joblib)
93
- - [Model configuration (model_config.json)](./assets/config/best-performing-model_config.json)
94
- - [Projekt code jupyter notebook](./assets/code/FrancisGross_screenplay_pred_nom.ipynb)
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
- ## License & Attribution
103
-
104
- - **MovieSum dataset**:
105
- Created and published by [Rohit Saxena](https://huggingface.co/datasets/rohitsaxena/MovieSum) (with Frank Keller).
106
- Licensed under the **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)** license.
107
- If you use this dataset, please cite:
108
- *Rohit Saxena and Frank Keller. "MovieSum: An Abstractive Summarization Dataset for Movie Screenplays." Findings of ACL 2024. arXiv:2408.06281.*
109
-
110
- - **Oscar nominations**:
111
- Data adapted from [David V. Lu!!’s Oscar Data](https://github.com/DLu/oscar_data)
112
- Licensed under the **BSD 2-Clause License** © 2022 David V. Lu!!.
113
-
114
- - **Movie-O-Label**:
115
- Created and processed by [Francis Gross](https://huggingface.co/datasets/Francis2003/Movie-O-Label), based on cleaned MovieSum screenplay texts enriched with Oscar nomination and winner labels.
116
- Released under the **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)** license.
117
- If you use this dataset, please cite:
118
- *Francis Gross. "Movie-O-Label: Predicting Oscar-Nominated Screenplays with Sentence Embeddings." Findings of ACL 2025 on Hugging Face.*
119
-
120
-
121
- ## Baseline Workflow
122
-
123
- This work provides a simple baseline for predicting whether a screenplay receives an Oscar nomination
124
- in the *Writing/Screenplays* category.
125
-
126
- 1. **Load the dataset**
127
- ```python
128
- from datasets import load_dataset
129
- ds = load_dataset("Francis2003/Movie-O-Label")
130
- ````
131
-
132
- The dataset includes a predefined **60/20/20 train/validation/test split** (`split_60_20_20.npz`).
133
-
134
- 2. **Text preparation**
135
- Use one or more of the available feature fields:
136
-
137
- * `script_clean` (recommended for embeddings)
138
- * `summary`
139
- * `title`
140
-
141
- 3. **Embeddings**
142
- Encode the texts with [**intfloat/e5-base-v2**](https://huggingface.co/intfloat/e5-base-v2).
143
- Each screenplay can be chunked (e.g., 400 words with 80-word overlap), encoded,
144
- and mean+max pooling and L2 normalized.
145
-
146
- 4. **Classifier**
147
- Train a logistic regression classifier with:
148
-
149
- ```python
150
- from sklearn.linear_model import LogisticRegression
151
- clf = LogisticRegression(max_iter=5000, class_weight="balanced", C=1.0)
152
- ```
153
-
154
- Select the threshold on the **validation set** to maximize F1 for the positive class (nominated).
155
-
156
- 5. **Evaluation**
157
- Report metrics such as Accuracy, ROC-AUC, PR-AUC, F1 (positive/negative) and Macro-F1.
158
-
159
- > The best-performing baseline used **script_clean + summary + title** embeddings
160
- > and achieved **ROC-AUC ≈ 0.79** and **Macro-F1 ≈ 0.68** on the test set.
161
-
162
- ```
163
-
164
-
165
- ## Usage
166
-
167
- ```python
168
- from datasets import load_dataset
169
-
170
- # Public dataset:
171
- ds = load_dataset("Francis2003/Movie-O-Label")
172
-
173
- print(ds)
174
- print(ds["train"][0])
175
-
176
-
177
-
 
1
+ ---
2
+ language: en
3
+ license: cc-by-nc-4.0
4
+ tags:
5
+ - movies
6
+ - screenplays
7
+ - oscar
8
+ - text-classification
9
+ - embeddings
10
+ size_categories:
11
+ - 1K<n<10K
12
+ task_categories:
13
+ - text-classification
14
+ pretty_name: Movie-O-Label
15
+ dataset_info:
16
+ features:
17
+ - name: movie_name
18
+ dtype: string
19
+ - name: imdb_id
20
+ dtype: string
21
+ - name: title
22
+ dtype: string
23
+ - name: year
24
+ dtype: int64
25
+ - name: summary
26
+ dtype: string
27
+ - name: script
28
+ dtype: string
29
+ - name: script_plain
30
+ dtype: string
31
+ - name: script_clean
32
+ dtype: string
33
+ - name: nominated
34
+ dtype: int64
35
+ - name: winner
36
+ dtype: int64
37
+ ---
38
+
39
+
40
+
41
+
42
+
43
+ # Movie-O-Label
44
+
45
+ **Movie-O-Label** is a dataset created by merging the [MovieSum](https://huggingface.co/datasets/rohitsaxena/MovieSum) screenplay collection with Oscar nomination labels derived from [David V. Lus Oscar Data](https://github.com/DLu/oscar_data).
46
+ It provides **screenplays, summaries, and metadata** together with binary labels indicating whether a movie’s screenplay received an **Oscar nomination** and whether it **won**.
47
+
48
+ ---
49
+
50
+ ## Contents
51
+
52
+ Each entry includes:
53
+
54
+
55
+ | column | type | description |
56
+ |-----------------|---------|-----------------------------------------------------------------------------|
57
+ | `movie_name` | string | Title and year combined, e.g. `The Social Network_2010` |
58
+ | `title` | string | Movie title |
59
+ | `year` | int | Release year |
60
+ | `imdb_id` | string | IMDb identifier (e.g. `tt1285016`) |
61
+ | `summary` | string | Plot summary of the movie |
62
+ | `script_clean` | string | script_plain cleaned (unicode normaliziation, stage directions and scene transitions stripped where possible, whitespace reduced)|
63
+ | `script_plain` | string | Original screenplay text (only xml-tags removed from script) |
64
+ | `script` | string | Raw script field from MovieSum (for reference) |
65
+ | `nominated` | int | `1` if the screenplay was nominated for an Academy Award (Writing) |
66
+ | `winner` | int | `1` if the screenplay won an Academy Award (Writing) |
67
+
68
+ ---
69
+
70
+ ## Splits
71
+
72
+ The dataset is provided as a **`DatasetDict`** with:
73
+
74
+ - `train` — 60% (1320 movies)
75
+ - `validation` — 20% (440 movies)
76
+ - `test` — 20% (440 movies)
77
+
78
+ Splits were created **stratified** by the `nominated` label to preserve class balance.
79
+
80
+ A file `split_60_20_20.npz` with the exact index arrays (`idx_train`, `idx_val`, `idx_test`) is also provided for full reproducibility.
81
+
82
+ ---
83
+
84
+ ## Additional Resources
85
+
86
+ To fully reproduce the experiments described in the paper:
87
+
88
+ - [Paper (PDF)](./assets/FrancisGross_PredictionNominatedScreenplays_2025.pdf)
89
+ - [Fixed Train/Validation/Test split (split_60_20_20.npz)](./assets/splits/split_60_20_20.npz)
90
+ - [Script embeddings (emb_script.joblib)](./assets/embeddings/emb_script.joblib)
91
+ - [Summary embeddings (emb_summary.joblib)](./assets/embeddings/emb_summary.joblib)
92
+ - [Title embeddings (emb_title.joblib)](./assets/embeddings/emb_title.joblib)
93
+ - [Model configuration (model_config.json)](./assets/config/best-performing-model_config.json)
94
+ - [Projekt code jupyter notebook](./assets/code/FrancisGross_screenplay_pred_nom.ipynb)
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+ ## License & Attribution
103
+
104
+ - **MovieSum dataset**:
105
+ Created and published by [Rohit Saxena](https://huggingface.co/datasets/rohitsaxena/MovieSum) (with Frank Keller).
106
+ Licensed under the **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)** license.
107
+ If you use this dataset, please cite:
108
+ *Rohit Saxena and Frank Keller. "MovieSum: An Abstractive Summarization Dataset for Movie Screenplays." Findings of ACL 2024. arXiv:2408.06281.*
109
+
110
+ - **Oscar nominations**:
111
+ Data adapted from [David V. Lu!!’s Oscar Data](https://github.com/DLu/oscar_data)
112
+ Licensed under the **BSD 2-Clause License** © 2022 David V. Lu!!.
113
+
114
+ - **Movie-O-Label**:
115
+ Created and processed by [Francis Gross](https://huggingface.co/datasets/Francis2003/Movie-O-Label), based on cleaned MovieSum screenplay texts enriched with Oscar nomination and winner labels.
116
+ Released under the **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)** license.
117
+ If you use this dataset, please cite:
118
+ *Francis Gross. "Movie-O-Label: Predicting Oscar-Nominated Screenplays with Sentence Embeddings." Findings of ACL 2025 on Hugging Face.*
119
+
120
+
121
+ ## Baseline Workflow
122
+
123
+ This work provides a simple baseline for predicting whether a screenplay receives an Oscar nomination
124
+ in the *Writing/Screenplays* category.
125
+
126
+ 1. **Load the dataset**
127
+ ```python
128
+ from datasets import load_dataset
129
+ ds = load_dataset("Francis2003/Movie-O-Label")
130
+ ````
131
+
132
+ The dataset includes a predefined **60/20/20 train/validation/test split** (`split_60_20_20.npz`).
133
+
134
+ 2. **Text preparation**
135
+ Use one or more of the available feature fields:
136
+
137
+ * `script_clean` (recommended for embeddings)
138
+ * `summary`
139
+ * `title`
140
+
141
+ 3. **Embeddings**
142
+ Encode the texts with [**intfloat/e5-base-v2**](https://huggingface.co/intfloat/e5-base-v2).
143
+ Each screenplay can be chunked (e.g., 400 words with 80-word overlap), encoded,
144
+ and mean+max pooling and L2 normalized.
145
+
146
+ 4. **Classifier**
147
+ Train a logistic regression classifier with:
148
+
149
+ ```python
150
+ from sklearn.linear_model import LogisticRegression
151
+ clf = LogisticRegression(max_iter=5000, class_weight="balanced", C=1.0)
152
+ ```
153
+
154
+ Select the threshold on the **validation set** to maximize F1 for the positive class (nominated).
155
+
156
+ 5. **Evaluation**
157
+ Report metrics such as Accuracy, ROC-AUC, PR-AUC, F1 (positive/negative) and Macro-F1.
158
+
159
+ > The best-performing baseline used **script_clean + summary + title** embeddings
160
+ > and achieved **ROC-AUC ≈ 0.79** and **Macro-F1 ≈ 0.68** on the test set.
161
+
162
+ ```
163
+
164
+
165
+ ## Usage
166
+
167
+ ```python
168
+ from datasets import load_dataset
169
+
170
+ # Public dataset:
171
+ ds = load_dataset("Francis2003/Movie-O-Label")
172
+
173
+ print(ds)
174
+ print(ds["train"][0])
175
+
176
+
177
+