Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,177 +1,177 @@
|
|
| 1 |
-
---
|
| 2 |
-
language: en
|
| 3 |
-
license: cc-by-nc-4.0
|
| 4 |
-
tags:
|
| 5 |
-
- movies
|
| 6 |
-
- screenplays
|
| 7 |
-
- oscar
|
| 8 |
-
- text-classification
|
| 9 |
-
- embeddings
|
| 10 |
-
size_categories:
|
| 11 |
-
- 1K<n<10K
|
| 12 |
-
task_categories:
|
| 13 |
-
- text-classification
|
| 14 |
-
pretty_name: Movie-O-Label
|
| 15 |
-
dataset_info:
|
| 16 |
-
features:
|
| 17 |
-
- name: movie_name
|
| 18 |
-
dtype: string
|
| 19 |
-
- name: imdb_id
|
| 20 |
-
dtype: string
|
| 21 |
-
- name: title
|
| 22 |
-
dtype: string
|
| 23 |
-
- name: year
|
| 24 |
-
dtype: int64
|
| 25 |
-
- name: summary
|
| 26 |
-
dtype: string
|
| 27 |
-
- name: script
|
| 28 |
-
dtype: string
|
| 29 |
-
- name: script_plain
|
| 30 |
-
dtype: string
|
| 31 |
-
- name: script_clean
|
| 32 |
-
dtype: string
|
| 33 |
-
- name: nominated
|
| 34 |
-
dtype: int64
|
| 35 |
-
- name: winner
|
| 36 |
-
dtype: int64
|
| 37 |
-
---
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
# Movie-O-Label
|
| 44 |
-
|
| 45 |
-
**Movie-O-Label** is a dataset created by merging the [MovieSum](https://huggingface.co/datasets/rohitsaxena/MovieSum) screenplay collection with Oscar nomination labels derived from [David V. Lu
|
| 46 |
-
It provides **screenplays, summaries, and metadata** together with binary labels indicating whether a movie’s screenplay received an **Oscar nomination** and whether it **won**.
|
| 47 |
-
|
| 48 |
-
---
|
| 49 |
-
|
| 50 |
-
## Contents
|
| 51 |
-
|
| 52 |
-
Each entry includes:
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
| column | type | description |
|
| 56 |
-
|-----------------|---------|-----------------------------------------------------------------------------|
|
| 57 |
-
| `movie_name` | string | Title and year combined, e.g. `The Social Network_2010` |
|
| 58 |
-
| `title` | string | Movie title |
|
| 59 |
-
| `year` | int | Release year |
|
| 60 |
-
| `imdb_id` | string | IMDb identifier (e.g. `tt1285016`) |
|
| 61 |
-
| `summary` | string | Plot summary of the movie |
|
| 62 |
-
| `script_clean` | string | script_plain cleaned (unicode normaliziation, stage directions and scene transitions stripped where possible, whitespace reduced)|
|
| 63 |
-
| `script_plain` | string | Original screenplay text (only xml-tags removed from script) |
|
| 64 |
-
| `script` | string | Raw script field from MovieSum (for reference) |
|
| 65 |
-
| `nominated` | int | `1` if the screenplay was nominated for an Academy Award (Writing) |
|
| 66 |
-
| `winner` | int | `1` if the screenplay won an Academy Award (Writing) |
|
| 67 |
-
|
| 68 |
-
---
|
| 69 |
-
|
| 70 |
-
## Splits
|
| 71 |
-
|
| 72 |
-
The dataset is provided as a **`DatasetDict`** with:
|
| 73 |
-
|
| 74 |
-
- `train` — 60% (1320 movies)
|
| 75 |
-
- `validation` — 20% (440 movies)
|
| 76 |
-
- `test` — 20% (440 movies)
|
| 77 |
-
|
| 78 |
-
Splits were created **stratified** by the `nominated` label to preserve class balance.
|
| 79 |
-
|
| 80 |
-
A file `split_60_20_20.npz` with the exact index arrays (`idx_train`, `idx_val`, `idx_test`) is also provided for full reproducibility.
|
| 81 |
-
|
| 82 |
-
---
|
| 83 |
-
|
| 84 |
-
## Additional Resources
|
| 85 |
-
|
| 86 |
-
To fully reproduce the experiments described in the paper:
|
| 87 |
-
|
| 88 |
-
- [Paper (PDF)](./assets/FrancisGross_PredictionNominatedScreenplays_2025.pdf)
|
| 89 |
-
- [Fixed Train/Validation/Test split (split_60_20_20.npz)](./assets/splits/split_60_20_20.npz)
|
| 90 |
-
- [Script embeddings (emb_script.joblib)](./assets/embeddings/emb_script.joblib)
|
| 91 |
-
- [Summary embeddings (emb_summary.joblib)](./assets/embeddings/emb_summary.joblib)
|
| 92 |
-
- [Title embeddings (emb_title.joblib)](./assets/embeddings/emb_title.joblib)
|
| 93 |
-
- [Model configuration (model_config.json)](./assets/config/best-performing-model_config.json)
|
| 94 |
-
- [Projekt code jupyter notebook](./assets/code/FrancisGross_screenplay_pred_nom.ipynb)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
## License & Attribution
|
| 103 |
-
|
| 104 |
-
- **MovieSum dataset**:
|
| 105 |
-
Created and published by [Rohit Saxena](https://huggingface.co/datasets/rohitsaxena/MovieSum) (with Frank Keller).
|
| 106 |
-
Licensed under the **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)** license.
|
| 107 |
-
If you use this dataset, please cite:
|
| 108 |
-
*Rohit Saxena and Frank Keller. "MovieSum: An Abstractive Summarization Dataset for Movie Screenplays." Findings of ACL 2024. arXiv:2408.06281.*
|
| 109 |
-
|
| 110 |
-
- **Oscar nominations**:
|
| 111 |
-
Data adapted from [David V. Lu!!’s Oscar Data](https://github.com/DLu/oscar_data)
|
| 112 |
-
Licensed under the **BSD 2-Clause License** © 2022 David V. Lu!!.
|
| 113 |
-
|
| 114 |
-
- **Movie-O-Label**:
|
| 115 |
-
Created and processed by [Francis Gross](https://huggingface.co/datasets/Francis2003/Movie-O-Label), based on cleaned MovieSum screenplay texts enriched with Oscar nomination and winner labels.
|
| 116 |
-
Released under the **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)** license.
|
| 117 |
-
If you use this dataset, please cite:
|
| 118 |
-
*Francis Gross. "Movie-O-Label: Predicting Oscar-Nominated Screenplays with Sentence Embeddings." Findings of ACL 2025 on Hugging Face.*
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
## Baseline Workflow
|
| 122 |
-
|
| 123 |
-
This work provides a simple baseline for predicting whether a screenplay receives an Oscar nomination
|
| 124 |
-
in the *Writing/Screenplays* category.
|
| 125 |
-
|
| 126 |
-
1. **Load the dataset**
|
| 127 |
-
```python
|
| 128 |
-
from datasets import load_dataset
|
| 129 |
-
ds = load_dataset("Francis2003/Movie-O-Label")
|
| 130 |
-
````
|
| 131 |
-
|
| 132 |
-
The dataset includes a predefined **60/20/20 train/validation/test split** (`split_60_20_20.npz`).
|
| 133 |
-
|
| 134 |
-
2. **Text preparation**
|
| 135 |
-
Use one or more of the available feature fields:
|
| 136 |
-
|
| 137 |
-
* `script_clean` (recommended for embeddings)
|
| 138 |
-
* `summary`
|
| 139 |
-
* `title`
|
| 140 |
-
|
| 141 |
-
3. **Embeddings**
|
| 142 |
-
Encode the texts with [**intfloat/e5-base-v2**](https://huggingface.co/intfloat/e5-base-v2).
|
| 143 |
-
Each screenplay can be chunked (e.g., 400 words with 80-word overlap), encoded,
|
| 144 |
-
and mean+max pooling and L2 normalized.
|
| 145 |
-
|
| 146 |
-
4. **Classifier**
|
| 147 |
-
Train a logistic regression classifier with:
|
| 148 |
-
|
| 149 |
-
```python
|
| 150 |
-
from sklearn.linear_model import LogisticRegression
|
| 151 |
-
clf = LogisticRegression(max_iter=5000, class_weight="balanced", C=1.0)
|
| 152 |
-
```
|
| 153 |
-
|
| 154 |
-
Select the threshold on the **validation set** to maximize F1 for the positive class (nominated).
|
| 155 |
-
|
| 156 |
-
5. **Evaluation**
|
| 157 |
-
Report metrics such as Accuracy, ROC-AUC, PR-AUC, F1 (positive/negative) and Macro-F1.
|
| 158 |
-
|
| 159 |
-
> The best-performing baseline used **script_clean + summary + title** embeddings
|
| 160 |
-
> and achieved **ROC-AUC ≈ 0.79** and **Macro-F1 ≈ 0.68** on the test set.
|
| 161 |
-
|
| 162 |
-
```
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
## Usage
|
| 166 |
-
|
| 167 |
-
```python
|
| 168 |
-
from datasets import load_dataset
|
| 169 |
-
|
| 170 |
-
# Public dataset:
|
| 171 |
-
ds = load_dataset("Francis2003/Movie-O-Label")
|
| 172 |
-
|
| 173 |
-
print(ds)
|
| 174 |
-
print(ds["train"][0])
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: cc-by-nc-4.0
|
| 4 |
+
tags:
|
| 5 |
+
- movies
|
| 6 |
+
- screenplays
|
| 7 |
+
- oscar
|
| 8 |
+
- text-classification
|
| 9 |
+
- embeddings
|
| 10 |
+
size_categories:
|
| 11 |
+
- 1K<n<10K
|
| 12 |
+
task_categories:
|
| 13 |
+
- text-classification
|
| 14 |
+
pretty_name: Movie-O-Label
|
| 15 |
+
dataset_info:
|
| 16 |
+
features:
|
| 17 |
+
- name: movie_name
|
| 18 |
+
dtype: string
|
| 19 |
+
- name: imdb_id
|
| 20 |
+
dtype: string
|
| 21 |
+
- name: title
|
| 22 |
+
dtype: string
|
| 23 |
+
- name: year
|
| 24 |
+
dtype: int64
|
| 25 |
+
- name: summary
|
| 26 |
+
dtype: string
|
| 27 |
+
- name: script
|
| 28 |
+
dtype: string
|
| 29 |
+
- name: script_plain
|
| 30 |
+
dtype: string
|
| 31 |
+
- name: script_clean
|
| 32 |
+
dtype: string
|
| 33 |
+
- name: nominated
|
| 34 |
+
dtype: int64
|
| 35 |
+
- name: winner
|
| 36 |
+
dtype: int64
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Movie-O-Label
|
| 44 |
+
|
| 45 |
+
**Movie-O-Label** is a dataset created by merging the [MovieSum](https://huggingface.co/datasets/rohitsaxena/MovieSum) screenplay collection with Oscar nomination labels derived from [David V. Lu’s Oscar Data](https://github.com/DLu/oscar_data).
|
| 46 |
+
It provides **screenplays, summaries, and metadata** together with binary labels indicating whether a movie’s screenplay received an **Oscar nomination** and whether it **won**.
|
| 47 |
+
|
| 48 |
+
---
|
| 49 |
+
|
| 50 |
+
## Contents
|
| 51 |
+
|
| 52 |
+
Each entry includes:
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
| column | type | description |
|
| 56 |
+
|-----------------|---------|-----------------------------------------------------------------------------|
|
| 57 |
+
| `movie_name` | string | Title and year combined, e.g. `The Social Network_2010` |
|
| 58 |
+
| `title` | string | Movie title |
|
| 59 |
+
| `year` | int | Release year |
|
| 60 |
+
| `imdb_id` | string | IMDb identifier (e.g. `tt1285016`) |
|
| 61 |
+
| `summary` | string | Plot summary of the movie |
|
| 62 |
+
| `script_clean` | string | script_plain cleaned (unicode normaliziation, stage directions and scene transitions stripped where possible, whitespace reduced)|
|
| 63 |
+
| `script_plain` | string | Original screenplay text (only xml-tags removed from script) |
|
| 64 |
+
| `script` | string | Raw script field from MovieSum (for reference) |
|
| 65 |
+
| `nominated` | int | `1` if the screenplay was nominated for an Academy Award (Writing) |
|
| 66 |
+
| `winner` | int | `1` if the screenplay won an Academy Award (Writing) |
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
## Splits
|
| 71 |
+
|
| 72 |
+
The dataset is provided as a **`DatasetDict`** with:
|
| 73 |
+
|
| 74 |
+
- `train` — 60% (1320 movies)
|
| 75 |
+
- `validation` — 20% (440 movies)
|
| 76 |
+
- `test` — 20% (440 movies)
|
| 77 |
+
|
| 78 |
+
Splits were created **stratified** by the `nominated` label to preserve class balance.
|
| 79 |
+
|
| 80 |
+
A file `split_60_20_20.npz` with the exact index arrays (`idx_train`, `idx_val`, `idx_test`) is also provided for full reproducibility.
|
| 81 |
+
|
| 82 |
+
---
|
| 83 |
+
|
| 84 |
+
## Additional Resources
|
| 85 |
+
|
| 86 |
+
To fully reproduce the experiments described in the paper:
|
| 87 |
+
|
| 88 |
+
- [Paper (PDF)](./assets/FrancisGross_PredictionNominatedScreenplays_2025.pdf)
|
| 89 |
+
- [Fixed Train/Validation/Test split (split_60_20_20.npz)](./assets/splits/split_60_20_20.npz)
|
| 90 |
+
- [Script embeddings (emb_script.joblib)](./assets/embeddings/emb_script.joblib)
|
| 91 |
+
- [Summary embeddings (emb_summary.joblib)](./assets/embeddings/emb_summary.joblib)
|
| 92 |
+
- [Title embeddings (emb_title.joblib)](./assets/embeddings/emb_title.joblib)
|
| 93 |
+
- [Model configuration (model_config.json)](./assets/config/best-performing-model_config.json)
|
| 94 |
+
- [Projekt code jupyter notebook](./assets/code/FrancisGross_screenplay_pred_nom.ipynb)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
## License & Attribution
|
| 103 |
+
|
| 104 |
+
- **MovieSum dataset**:
|
| 105 |
+
Created and published by [Rohit Saxena](https://huggingface.co/datasets/rohitsaxena/MovieSum) (with Frank Keller).
|
| 106 |
+
Licensed under the **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)** license.
|
| 107 |
+
If you use this dataset, please cite:
|
| 108 |
+
*Rohit Saxena and Frank Keller. "MovieSum: An Abstractive Summarization Dataset for Movie Screenplays." Findings of ACL 2024. arXiv:2408.06281.*
|
| 109 |
+
|
| 110 |
+
- **Oscar nominations**:
|
| 111 |
+
Data adapted from [David V. Lu!!’s Oscar Data](https://github.com/DLu/oscar_data)
|
| 112 |
+
Licensed under the **BSD 2-Clause License** © 2022 David V. Lu!!.
|
| 113 |
+
|
| 114 |
+
- **Movie-O-Label**:
|
| 115 |
+
Created and processed by [Francis Gross](https://huggingface.co/datasets/Francis2003/Movie-O-Label), based on cleaned MovieSum screenplay texts enriched with Oscar nomination and winner labels.
|
| 116 |
+
Released under the **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)** license.
|
| 117 |
+
If you use this dataset, please cite:
|
| 118 |
+
*Francis Gross. "Movie-O-Label: Predicting Oscar-Nominated Screenplays with Sentence Embeddings." Findings of ACL 2025 on Hugging Face.*
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
## Baseline Workflow
|
| 122 |
+
|
| 123 |
+
This work provides a simple baseline for predicting whether a screenplay receives an Oscar nomination
|
| 124 |
+
in the *Writing/Screenplays* category.
|
| 125 |
+
|
| 126 |
+
1. **Load the dataset**
|
| 127 |
+
```python
|
| 128 |
+
from datasets import load_dataset
|
| 129 |
+
ds = load_dataset("Francis2003/Movie-O-Label")
|
| 130 |
+
````
|
| 131 |
+
|
| 132 |
+
The dataset includes a predefined **60/20/20 train/validation/test split** (`split_60_20_20.npz`).
|
| 133 |
+
|
| 134 |
+
2. **Text preparation**
|
| 135 |
+
Use one or more of the available feature fields:
|
| 136 |
+
|
| 137 |
+
* `script_clean` (recommended for embeddings)
|
| 138 |
+
* `summary`
|
| 139 |
+
* `title`
|
| 140 |
+
|
| 141 |
+
3. **Embeddings**
|
| 142 |
+
Encode the texts with [**intfloat/e5-base-v2**](https://huggingface.co/intfloat/e5-base-v2).
|
| 143 |
+
Each screenplay can be chunked (e.g., 400 words with 80-word overlap), encoded,
|
| 144 |
+
and mean+max pooling and L2 normalized.
|
| 145 |
+
|
| 146 |
+
4. **Classifier**
|
| 147 |
+
Train a logistic regression classifier with:
|
| 148 |
+
|
| 149 |
+
```python
|
| 150 |
+
from sklearn.linear_model import LogisticRegression
|
| 151 |
+
clf = LogisticRegression(max_iter=5000, class_weight="balanced", C=1.0)
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
Select the threshold on the **validation set** to maximize F1 for the positive class (nominated).
|
| 155 |
+
|
| 156 |
+
5. **Evaluation**
|
| 157 |
+
Report metrics such as Accuracy, ROC-AUC, PR-AUC, F1 (positive/negative) and Macro-F1.
|
| 158 |
+
|
| 159 |
+
> The best-performing baseline used **script_clean + summary + title** embeddings
|
| 160 |
+
> and achieved **ROC-AUC ≈ 0.79** and **Macro-F1 ≈ 0.68** on the test set.
|
| 161 |
+
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
## Usage
|
| 166 |
+
|
| 167 |
+
```python
|
| 168 |
+
from datasets import load_dataset
|
| 169 |
+
|
| 170 |
+
# Public dataset:
|
| 171 |
+
ds = load_dataset("Francis2003/Movie-O-Label")
|
| 172 |
+
|
| 173 |
+
print(ds)
|
| 174 |
+
print(ds["train"][0])
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|