|
|
import datasets |
|
|
import numpy as np |
|
|
import glob |
|
|
import os |
|
|
from datetime import datetime |
|
|
from huggingface_hub import snapshot_download |
|
|
import tempfile |
|
|
|
|
|
_DESCRIPTION = """\ |
|
|
Dataset for Arctic sea ice concentration spatio-temporal forecasting task. |
|
|
""" |
|
|
|
|
|
_CITATION = """\ |
|
|
@misc{borisova2025aiice, |
|
|
author = {Julia Borisova}, |
|
|
title = {Aiice: sea ice concentration forecasting benchmark for AI models}, |
|
|
year = {2025}, |
|
|
publisher = {Hugging Face}, |
|
|
howpublished = {\\url{https://huggingface.co/datasets/ITMO-NSS/Aiice}} |
|
|
} |
|
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/ITMO-NSS/Aiice" |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class Aiice(datasets.GeneratorBasedBuilder): |
|
|
"""Sea Ice concentration forecasting benchmark dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
def _info(self): |
|
|
return datasets.DatasetInfo( |
|
|
description=_DESCRIPTION, |
|
|
features=datasets.Features({ |
|
|
"date": datasets.Value("string"), |
|
|
"matrix": datasets.Array2D(shape=(432, 432), dtype="float32"), |
|
|
"filename": datasets.Value("string"), |
|
|
}), |
|
|
homepage=_HOMEPAGE, |
|
|
citation=_CITATION, |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
"""Define splits and handle data downloading.""" |
|
|
|
|
|
repo_id = "ITMO-NSS/Aiice" |
|
|
|
|
|
|
|
|
data_dir = dl_manager.download_and_extract( |
|
|
f"https://huggingface.co/datasets/{repo_id}/resolve/main/global_series.zip" |
|
|
) |
|
|
|
|
|
|
|
|
if not os.path.exists(data_dir): |
|
|
logger.info("Downloading dataset files...") |
|
|
data_dir = snapshot_download( |
|
|
repo_id=repo_id, |
|
|
repo_type="dataset", |
|
|
cache_dir=dl_manager.download_cache_dir, |
|
|
allow_patterns="global_series/**/*.npy" |
|
|
) |
|
|
|
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
gen_kwargs={ |
|
|
"data_dir": data_dir, |
|
|
"date_range": ("1979-01-01", "2015-12-31"), |
|
|
"split_name": "train", |
|
|
}, |
|
|
), |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.VALIDATION, |
|
|
gen_kwargs={ |
|
|
"data_dir": data_dir, |
|
|
"date_range": ("2016-01-01", "2020-12-31"), |
|
|
"split_name": "validation", |
|
|
}, |
|
|
), |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TEST, |
|
|
gen_kwargs={ |
|
|
"data_dir": data_dir, |
|
|
"date_range": ("2021-01-01", "2025-12-31"), |
|
|
"split_name": "test", |
|
|
}, |
|
|
), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, data_dir, date_range, split_name): |
|
|
"""Generate examples for each split.""" |
|
|
|
|
|
npy_files = [] |
|
|
search_path = os.path.join(data_dir, "global_series", "**", "*.npy") |
|
|
|
|
|
for file_path in glob.glob(search_path, recursive=True): |
|
|
npy_files.append(file_path) |
|
|
|
|
|
logger.info(f"Found {len(npy_files)} total files") |
|
|
|
|
|
start_date = datetime.strptime(date_range[0], "%Y-%m-%d") |
|
|
end_date = datetime.strptime(date_range[1], "%Y-%m-%d") |
|
|
|
|
|
filtered_files = [] |
|
|
for file_path in npy_files: |
|
|
filename = os.path.basename(file_path) |
|
|
|
|
|
date_str = filename.replace('.npy', '').replace('osisaf_', '') |
|
|
|
|
|
try: |
|
|
file_date = datetime.strptime(date_str, "%Y%m%d") |
|
|
if start_date <= file_date <= end_date: |
|
|
filtered_files.append((file_path, filename, file_date)) |
|
|
except ValueError as e: |
|
|
logger.warning(f"Could not parse date from {filename}: {e}") |
|
|
continue |
|
|
|
|
|
filtered_files.sort(key=lambda x: x[2]) |
|
|
logger.info(f"After date filtering: {len(filtered_files)} files for {split_name} split") |
|
|
|
|
|
for idx, (file_path, filename, file_date) in enumerate(filtered_files): |
|
|
try: |
|
|
matrix = np.load(file_path).astype(np.float32) |
|
|
date_iso = file_date.strftime("%Y-%m-%d") |
|
|
|
|
|
yield idx, { |
|
|
"date": date_iso, |
|
|
"matrix": matrix, |
|
|
"filename": filename, |
|
|
} |
|
|
except Exception as e: |
|
|
logger.warning(f"Could not load {file_path}: {e}") |
|
|
continue |