import datasets import numpy as np import glob import os from datetime import datetime from huggingface_hub import snapshot_download import tempfile _DESCRIPTION = """\ Dataset for Arctic sea ice concentration spatio-temporal forecasting task. """ _CITATION = """\ @misc{borisova2025aiice, author = {Julia Borisova}, title = {Aiice: sea ice concentration forecasting benchmark for AI models}, year = {2025}, publisher = {Hugging Face}, howpublished = {\\url{https://huggingface.co/datasets/ITMO-NSS/Aiice}} } """ _HOMEPAGE = "https://huggingface.co/datasets/ITMO-NSS/Aiice" logger = datasets.logging.get_logger(__name__) class Aiice(datasets.GeneratorBasedBuilder): """Sea Ice concentration forecasting benchmark dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "date": datasets.Value("string"), # ISO format date "YYYY-MM-DD" "matrix": datasets.Array2D(shape=(432, 432), dtype="float32"), "filename": datasets.Value("string"), }), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Define splits and handle data downloading.""" # Download the entire dataset repository repo_id = "ITMO-NSS/Aiice" # Use dl_manager to download files data_dir = dl_manager.download_and_extract( f"https://huggingface.co/datasets/{repo_id}/resolve/main/global_series.zip" ) # If zip doesn't exist, download the entire repo if not os.path.exists(data_dir): logger.info("Downloading dataset files...") data_dir = snapshot_download( repo_id=repo_id, repo_type="dataset", cache_dir=dl_manager.download_cache_dir, allow_patterns="global_series/**/*.npy" ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_dir": data_dir, "date_range": ("1979-01-01", "2015-12-31"), "split_name": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_dir": data_dir, "date_range": ("2016-01-01", "2020-12-31"), "split_name": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_dir": data_dir, "date_range": ("2021-01-01", "2025-12-31"), "split_name": "test", }, ), ] def _generate_examples(self, data_dir, date_range, split_name): """Generate examples for each split.""" # Find all .npy files npy_files = [] search_path = os.path.join(data_dir, "global_series", "**", "*.npy") for file_path in glob.glob(search_path, recursive=True): npy_files.append(file_path) logger.info(f"Found {len(npy_files)} total files") start_date = datetime.strptime(date_range[0], "%Y-%m-%d") end_date = datetime.strptime(date_range[1], "%Y-%m-%d") filtered_files = [] for file_path in npy_files: filename = os.path.basename(file_path) # Extract date from filename like 'osisaf_19790101.npy' date_str = filename.replace('.npy', '').replace('osisaf_', '') try: file_date = datetime.strptime(date_str, "%Y%m%d") if start_date <= file_date <= end_date: filtered_files.append((file_path, filename, file_date)) except ValueError as e: logger.warning(f"Could not parse date from {filename}: {e}") continue filtered_files.sort(key=lambda x: x[2]) logger.info(f"After date filtering: {len(filtered_files)} files for {split_name} split") for idx, (file_path, filename, file_date) in enumerate(filtered_files): try: matrix = np.load(file_path).astype(np.float32) date_iso = file_date.strftime("%Y-%m-%d") yield idx, { "date": date_iso, "matrix": matrix, "filename": filename, } except Exception as e: logger.warning(f"Could not load {file_path}: {e}") continue