--- license: mit task_categories: - image-to-text tags: - ui-automation - gui-agent - multi-video language: - en size_categories: - n<1K dataset_info: features: - name: video_id dtype: string - name: step dtype: int32 - name: system dtype: string - name: user dtype: string - name: assistant dtype: string - name: image dtype: image splits: - name: train num_examples: 2 --- # UI Automation Dataset (Multi-Video) **2 examples** from **1 videos** - UI automation tasks from screen recordings. ## Dataset Structure Each entry contains: - **video_id**: Sequential ID for each video (video_001, video_002, etc.) - **step**: Step number within that video (0, 1, 2, ...) - **system**: System prompt for the GUI agent - **user**: Task instruction + previous actions - **assistant**: Model's reasoning and action - **image**: Screenshot of the UI state ## Usage ```python from datasets import load_dataset ds = load_dataset("KMH158-QLU/recruiter_perfect2") # Access by video for video_id in set(ds['train']['video_id']): video_data = ds['train'].filter(lambda x: x['video_id'] == video_id) print(f"Video {video_id}: {len(video_data)} steps") # Or iterate all examples for item in ds['train']: print(f"{item['video_id']} - Step {item['step']}: {item['assistant'][:50]}...") ``` ## Growing Dataset This dataset supports multiple videos. Each video gets a unique ID (video_001, video_002, etc.). New videos are automatically appended with the next available ID.