File size: 7,386 Bytes
1b70fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7666d97
1b70fe2
 
7666d97
1b70fe2
 
7666d97
1b70fe2
7666d97
1b70fe2
 
 
 
 
 
 
 
7666d97
56dc528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456567d
56dc528
456567d
56dc528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
---
license: other
license_name: readmefile
license_link: LICENSE
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
dataset_info:
  features:
  - name: id
    dtype: uint32
  - name: right_eye
    large_list: float64
  - name: right_earbase
    large_list: float64
  - name: right_earend
    large_list: float64
  - name: right_antler_base
    large_list: float64
  - name: right_antler_end
    large_list: float64
  - name: left_antler_base
    large_list: float64
  - name: left_antler_end
    large_list: float64
  - name: left_earbase
    large_list: float64
  - name: left_earend
    large_list: float64
  - name: left_eye
    large_list: float64
  - name: nose
    large_list: float64
  - name: upper_jaw
    large_list: float64
  - name: lower_jaw
    large_list: float64
  - name: mouth_end_right
    large_list: float64
  - name: throat_base
    large_list: float64
  - name: neck_base
    large_list: float64
  - name: neck_end
    large_list: float64
  - name: back_base
    large_list: float64
  - name: back_middle
    large_list: float64
  - name: back_end
    large_list: float64
  - name: tail_base
    large_list: float64
  - name: body_middle_right
    large_list: float64
  - name: bbox
    large_list: float64
  - name: mouth_end_left
    large_list: float64
  - name: throat_end
    large_list: float64
  - name: tail_end
    large_list: float64
  - name: front_left_thai
    large_list: float64
  - name: front_left_knee
    large_list: float64
  - name: front_left_paw
    large_list: float64
  - name: front_right_thai
    large_list: float64
  - name: front_right_paw
    large_list: float64
  - name: front_right_knee
    large_list: float64
  - name: back_left_knee
    large_list: float64
  - name: back_left_paw
    large_list: float64
  - name: back_left_thai
    large_list: float64
  - name: back_right_thai
    large_list: float64
  - name: back_right_paw
    large_list: float64
  - name: back_right_knee
    large_list: float64
  - name: belly_bottom
    large_list: float64
  - name: body_middle_left
    large_list: float64
  - name: name_file
    dtype: large_string
  - name: name_class
    dtype: large_string
  - name: image_base64s
    dtype: large_string
  - name: image_width
    dtype: int64
  - name: image_height
    dtype: int64
  - name: image_license
    dtype: large_string
  splits:
  - name: train
    num_bytes: 1557452015
    num_examples: 9423
  - name: validation
    num_bytes: 82813875
    num_examples: 524
  - name: test
    num_bytes: 87294963
    num_examples: 524
  download_size: 1715582665
  dataset_size: 1727560853
task_categories:
- feature-extraction
tags:
- biology
pretty_name: AwA-Pose-Lite
size_categories:
- 10K<n<100K
---

## **Dataset Summary**

AwA Pose, a quadrupedal keypoint detection dataset that offers richer annotations and greater species diversity than existing datasets. The data supports efficiency, advances in research on generalized keypoint detection in animals.

The dataset was explored, filtered, and stored in a [pyarrow type](https://arrow.apache.org/docs/python/index.html). See : [AwA2_dataset_analysis](https://www.kaggle.com/code/radimkzl/awa2-dataset-analysis)

***Original Kaggle dataset:*** [AwA2_dataset](https://www.kaggle.com/datasets/radimkzl/awa2-dataset)

The original data comes from two sources and is described in:

- [A Novel Dataset for Keypoint Detection of
Quadruped Animals from Images](https://arxiv.org/pdf/2108.13958)
- [GitHub:  prinik/AwA-Pose](https://github.com/prinik/AwA-Pose/tree/main)
- [Animals with Attributes 2](https://cvml.ista.ac.at/AwA2/)

*The dataset contains:*
- Lite version of keypoints dataset
- Full version of keypoints dataset

*All version contains:*
- train dataset: 90%
- validation dataset: 5%
- test dataset: 5%

## **Description of data in the dataset**

*Class names:*
- antelope 
- bobcat
- buffalo
- chihuahua
- collie
- cow
- dalmatian
- deer
- elephant
- fox
- german+shepherd
- giant+panda
- giraffe
- grizzly+bear
- hippopotamus
- horse
- leopard
- lion
- moose
- otter
- ox
- persian+cat
- pig
- polar+bear
- rabbit
- raccoon
- rhinoceros
- sheep
- siamese+cat
- squirrel
- tiger
- weasel
- wolf
- zebra

## **Columns description**

| name column| description of column                |
|:--------------|:--------------------------------|
| id | id number of records |
| right_eye | keypoint values [x,y] |
| right_earbase | keypoint values [x,y] |
| right_earend | keypoint values [x,y] |
| right_antler_base | keypoint values [x,y] |
| right_antler_end | keypoint values [x,y] |
| left_antler_base | keypoint values [x,y] |
| left_antler_end | keypoint values [x,y] |
| left_earbase |  keypoint values [x,y] |
| left_earend |  keypoint values [x,y] |
| left_eye | keypoint values [x,y] |
| nose | keypoint values [x,y] |
| upper_jaw | keypoint values [x,y] |
| lower_jaw | keypoint values [x,y] |
| mouth_end_right | keypoint values [x,y] |
| throat_base | keypoint values [x,y] |
| neck_base | keypoint values [x,y] |
| neck_end | keypoint values [x,y] |
| back_base | keypoint values [x,y] |
| back_middle | keypoint values [x,y] |
| back_end | keypoint values [x,y] |
| tail_base | keypoint values [x,y] |
| body_middle_right | keypoint values [x,y] |
| bbox | bounding box dimension [x1, y1, x2, y2] |
| mouth_end_left | keypoint values [x,y] |
| throat_end | keypoint values [x,y] |
| tail_end | keypoint values [x,y] |
| front_left_thai | keypoint values [x,y] |
| front_left_knee | keypoint values [x,y] |
| front_left_paw | keypoint values [x,y] |
| front_right_thai | keypoint values [x,y] |
| front_right_paw | keypoint values [x,y] |
| front_right_knee | keypoint values [x,y] |
| back_left_knee | keypoint values [x,y] |
| back_left_paw | keypoint values [x,y] |
| back_left_thai | keypoint values [x,y] |
| back_right_thai | keypoint values [x,y] |
| back_right_paw | keypoint values [x,y] |
| back_right_knee | keypoint values [x,y] |
| belly_bottom | keypoint values [x,y] |
| body_middle_left | keypoint values [x,y] |
| name_file | name of file as string |
| name_class | name of class as string |
| image_base64s | image as string Base64 |
| image_width | value of with of image |
| image_height | value of height of image |
| image_license | text of licence of image |

## **Notes on data**

> If a *keypoints* contains `[-1.0, -1.0]`, it means that the point is not visible in the image. These points must be masked when training the model.

> Images are stored as a Base64 string. They can be transformed using the function:

```python
import base64
import io
from PIL import Image

def base64_to_img(base64_str):
    img_bytes = base64.b64decode(base64_str)
    img_buffer = io.BytesIO(img_bytes)
    img = Image.open(img_buffer)
    
    return img
```

Find out more in [AwA2_dataset_analysis](https://www.kaggle.com/code/radimkzl/awa2-dataset-analysis#Create-AwA2-dataset-for-Hugging-Face...)

## **Licensing Information**

Data for keypoints is licensed according to [GitHub: prinik/AwA-Pose](https://github.com/prinik/AwA-Pose/tree/main),  this license is [MIT](https://github.com/prinik/AwA-Pose/tree/main?tab=MIT-1-ov-file#readme).

The license for the images is according to [Animals with Attributes 2](https://cvml.ista.ac.at/AwA2/), see data column `image_license `.