KangKang625 commited on
Commit
d0f0906
·
verified ·
1 Parent(s): f2c5de4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -54
README.md CHANGED
@@ -1,54 +1,50 @@
1
- ---
2
- license: mit
3
- task_categories:
4
- - question-answering
5
- - text-classification
6
- - text-retrieval
7
- language:
8
- - en
9
- tags:
10
- - academic
11
- - questions
12
- - evidence
13
- - papers
14
- size_categories:
15
- - 1K<n<10K
16
- ---
17
-
18
- # ELA Bench Dataset
19
-
20
- ## Description
21
- This dataset contains academic questions with evidence passages extracted from research papers. Each question is paired with a relevant passage from the source paper that provides evidence for answering the question. This is a test dataset for evaluating question-answering systems on academic literature.
22
-
23
- ## Dataset Structure
24
- The dataset contains 403 questions with the following fields:
25
- - `paper_id`: ID of the source paper
26
- - `question_type`: Type of question (SA-MCQ, MA-MCQ, etc.)
27
- - `question`: The question text
28
- - `answer`: The correct answer
29
- - `relevant_passage`: Evidence passage extracted from the paper
30
- - `paper_content`: Full content of the source paper
31
-
32
- ## Usage
33
- ```python
34
- from datasets import load_dataset
35
-
36
- # Load the dataset
37
- dataset = load_dataset("KangKang625/ELAIPBench")
38
-
39
- # Access the data
40
- data = dataset['test']
41
- print(f"Number of questions: {len(data)}")
42
- print(f"First question: {data[0]['question']}")
43
- print(f"Paper content length: {len(data[0]['paper_content'])}")
44
-
45
- # Filter by question type
46
- mcq_questions = [item for item in data if item['question_type'] == 'SA-MCQ']
47
- print(f"Single-choice questions: {len(mcq_questions)}")
48
- ```
49
-
50
- ## Citation
51
- If you use this dataset, please cite the original ELA Bench paper.
52
-
53
- ## License
54
- MIT License
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - question-answering
5
+ - text-classification
6
+ - text-retrieval
7
+ language:
8
+ - en
9
+ tags:
10
+ - academic
11
+ - questions
12
+ - evidence
13
+ - papers
14
+ size_categories:
15
+ - 1K<n<10K
16
+ ---
17
+
18
+ # ELAIPBench Dataset
19
+
20
+ ## Description
21
+ This dataset contains academic questions with evidence passages extracted from research papers. Each question is paired with a relevant passage from the source paper that provides evidence for answering the question.
22
+
23
+ ## Dataset Structure
24
+ The dataset contains 403 questions with the following fields:
25
+ - `paper_id`: ID of the source paper
26
+ - `question_type`: Type of question (SA-MCQ, MA-MCQ)
27
+ - `question`: The question text
28
+ - `answer`: The correct answer
29
+ - `relevant_passage`: Evidence passage extracted from the paper
30
+ - `paper_content`: Full content of the source paper
31
+
32
+ ## Usage
33
+ ```python
34
+ from datasets import load_dataset
35
+
36
+ # Load the dataset
37
+ dataset = load_dataset("KangKang625/ELAIPBench")
38
+
39
+ # Access the data
40
+ data = dataset['test']
41
+ print(f"Number of questions: {len(data)}")
42
+ print(f"First question: {data[0]['question']}")
43
+ print(f"Paper content: {data[0]['paper_content']}")
44
+ ```
45
+
46
+ ## Citation
47
+ If you use this dataset, please cite the original ELAIPBench paper.
48
+
49
+ ## License
50
+ MIT License