Update README.md
Browse files
README.md
CHANGED
|
@@ -1,54 +1,50 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
task_categories:
|
| 4 |
-
- question-answering
|
| 5 |
-
- text-classification
|
| 6 |
-
- text-retrieval
|
| 7 |
-
language:
|
| 8 |
-
- en
|
| 9 |
-
tags:
|
| 10 |
-
- academic
|
| 11 |
-
- questions
|
| 12 |
-
- evidence
|
| 13 |
-
- papers
|
| 14 |
-
size_categories:
|
| 15 |
-
- 1K<n<10K
|
| 16 |
-
---
|
| 17 |
-
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
## Description
|
| 21 |
-
This dataset contains academic questions with evidence passages extracted from research papers. Each question is paired with a relevant passage from the source paper that provides evidence for answering the question.
|
| 22 |
-
|
| 23 |
-
## Dataset Structure
|
| 24 |
-
The dataset contains 403 questions with the following fields:
|
| 25 |
-
- `paper_id`: ID of the source paper
|
| 26 |
-
- `question_type`: Type of question (SA-MCQ, MA-MCQ
|
| 27 |
-
- `question`: The question text
|
| 28 |
-
- `answer`: The correct answer
|
| 29 |
-
- `relevant_passage`: Evidence passage extracted from the paper
|
| 30 |
-
- `paper_content`: Full content of the source paper
|
| 31 |
-
|
| 32 |
-
## Usage
|
| 33 |
-
```python
|
| 34 |
-
from datasets import load_dataset
|
| 35 |
-
|
| 36 |
-
# Load the dataset
|
| 37 |
-
dataset = load_dataset("KangKang625/ELAIPBench")
|
| 38 |
-
|
| 39 |
-
# Access the data
|
| 40 |
-
data = dataset['test']
|
| 41 |
-
print(f"Number of questions: {len(data)}")
|
| 42 |
-
print(f"First question: {data[0]['question']}")
|
| 43 |
-
print(f"Paper content
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
If you use this dataset, please cite the original ELA Bench paper.
|
| 52 |
-
|
| 53 |
-
## License
|
| 54 |
-
MIT License
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- question-answering
|
| 5 |
+
- text-classification
|
| 6 |
+
- text-retrieval
|
| 7 |
+
language:
|
| 8 |
+
- en
|
| 9 |
+
tags:
|
| 10 |
+
- academic
|
| 11 |
+
- questions
|
| 12 |
+
- evidence
|
| 13 |
+
- papers
|
| 14 |
+
size_categories:
|
| 15 |
+
- 1K<n<10K
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# ELAIPBench Dataset
|
| 19 |
+
|
| 20 |
+
## Description
|
| 21 |
+
This dataset contains academic questions with evidence passages extracted from research papers. Each question is paired with a relevant passage from the source paper that provides evidence for answering the question.
|
| 22 |
+
|
| 23 |
+
## Dataset Structure
|
| 24 |
+
The dataset contains 403 questions with the following fields:
|
| 25 |
+
- `paper_id`: ID of the source paper
|
| 26 |
+
- `question_type`: Type of question (SA-MCQ, MA-MCQ)
|
| 27 |
+
- `question`: The question text
|
| 28 |
+
- `answer`: The correct answer
|
| 29 |
+
- `relevant_passage`: Evidence passage extracted from the paper
|
| 30 |
+
- `paper_content`: Full content of the source paper
|
| 31 |
+
|
| 32 |
+
## Usage
|
| 33 |
+
```python
|
| 34 |
+
from datasets import load_dataset
|
| 35 |
+
|
| 36 |
+
# Load the dataset
|
| 37 |
+
dataset = load_dataset("KangKang625/ELAIPBench")
|
| 38 |
+
|
| 39 |
+
# Access the data
|
| 40 |
+
data = dataset['test']
|
| 41 |
+
print(f"Number of questions: {len(data)}")
|
| 42 |
+
print(f"First question: {data[0]['question']}")
|
| 43 |
+
print(f"Paper content: {data[0]['paper_content']}")
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Citation
|
| 47 |
+
If you use this dataset, please cite the original ELAIPBench paper.
|
| 48 |
+
|
| 49 |
+
## License
|
| 50 |
+
MIT License
|
|
|
|
|
|
|
|
|
|
|
|