|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datetime as dt |
|
|
import os |
|
|
from dataclasses import dataclass, field |
|
|
from pathlib import Path |
|
|
from typing import Type |
|
|
|
|
|
import draccus |
|
|
from huggingface_hub import hf_hub_download |
|
|
from huggingface_hub.errors import HfHubHTTPError |
|
|
|
|
|
from lerobot.common import envs |
|
|
from lerobot.common.optim import OptimizerConfig |
|
|
from lerobot.common.optim.schedulers import LRSchedulerConfig |
|
|
from lerobot.common.utils.hub import HubMixin |
|
|
from lerobot.configs import parser |
|
|
from lerobot.configs.default import DatasetConfig, EvalConfig, WandBConfig |
|
|
from lerobot.configs.policies import PreTrainedConfig |
|
|
|
|
|
TRAIN_CONFIG_NAME = "train_config.json" |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class TrainPipelineConfig(HubMixin): |
|
|
dataset: DatasetConfig |
|
|
env: envs.EnvConfig | None = None |
|
|
policy: PreTrainedConfig | None = None |
|
|
|
|
|
|
|
|
output_dir: Path | None = None |
|
|
job_name: str | None = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
resume: bool = False |
|
|
|
|
|
|
|
|
seed: int | None = 1000 |
|
|
|
|
|
num_workers: int = 4 |
|
|
batch_size: int = 8 |
|
|
steps: int = 100_000 |
|
|
eval_freq: int = 20_000 |
|
|
log_freq: int = 200 |
|
|
save_checkpoint: bool = True |
|
|
|
|
|
save_freq: int = 20_000 |
|
|
use_policy_training_preset: bool = True |
|
|
optimizer: OptimizerConfig | None = None |
|
|
scheduler: LRSchedulerConfig | None = None |
|
|
eval: EvalConfig = field(default_factory=EvalConfig) |
|
|
wandb: WandBConfig = field(default_factory=WandBConfig) |
|
|
|
|
|
def __post_init__(self): |
|
|
self.checkpoint_path = None |
|
|
|
|
|
def validate(self): |
|
|
|
|
|
policy_path = parser.get_path_arg("policy") |
|
|
if policy_path: |
|
|
|
|
|
cli_overrides = parser.get_cli_overrides("policy") |
|
|
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides) |
|
|
self.policy.pretrained_path = policy_path |
|
|
elif self.resume: |
|
|
|
|
|
config_path = parser.parse_arg("config_path") |
|
|
if not config_path: |
|
|
raise ValueError( |
|
|
f"A config_path is expected when resuming a run. Please specify path to {TRAIN_CONFIG_NAME}" |
|
|
) |
|
|
if not Path(config_path).resolve().exists(): |
|
|
raise NotADirectoryError( |
|
|
f"{config_path=} is expected to be a local path. " |
|
|
"Resuming from the hub is not supported for now." |
|
|
) |
|
|
policy_path = Path(config_path).parent |
|
|
self.policy.pretrained_path = policy_path |
|
|
self.checkpoint_path = policy_path.parent |
|
|
|
|
|
if not self.job_name: |
|
|
if self.env is None: |
|
|
self.job_name = f"{self.policy.type}" |
|
|
else: |
|
|
self.job_name = f"{self.env.type}_{self.policy.type}" |
|
|
|
|
|
if not self.resume and isinstance(self.output_dir, Path) and self.output_dir.is_dir(): |
|
|
raise FileExistsError( |
|
|
f"Output directory {self.output_dir} already exists and resume is {self.resume}. " |
|
|
f"Please change your output directory so that {self.output_dir} is not overwritten." |
|
|
) |
|
|
elif not self.output_dir: |
|
|
now = dt.datetime.now() |
|
|
train_dir = f"{now:%Y-%m-%d}/{now:%H-%M-%S}_{self.job_name}" |
|
|
self.output_dir = Path("outputs/train") / train_dir |
|
|
|
|
|
if isinstance(self.dataset.repo_id, list): |
|
|
raise NotImplementedError("LeRobotMultiDataset is not currently implemented.") |
|
|
|
|
|
if not self.use_policy_training_preset and (self.optimizer is None or self.scheduler is None): |
|
|
raise ValueError("Optimizer and Scheduler must be set when the policy presets are not used.") |
|
|
elif self.use_policy_training_preset and not self.resume: |
|
|
self.optimizer = self.policy.get_optimizer_preset() |
|
|
self.scheduler = self.policy.get_scheduler_preset() |
|
|
|
|
|
@classmethod |
|
|
def __get_path_fields__(cls) -> list[str]: |
|
|
"""This enables the parser to load config from the policy using `--policy.path=local/dir`""" |
|
|
return ["policy"] |
|
|
|
|
|
def to_dict(self) -> dict: |
|
|
return draccus.encode(self) |
|
|
|
|
|
def _save_pretrained(self, save_directory: Path) -> None: |
|
|
with open(save_directory / TRAIN_CONFIG_NAME, "w") as f, draccus.config_type("json"): |
|
|
draccus.dump(self, f, indent=4) |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained( |
|
|
cls: Type["TrainPipelineConfig"], |
|
|
pretrained_name_or_path: str | Path, |
|
|
*, |
|
|
force_download: bool = False, |
|
|
resume_download: bool = None, |
|
|
proxies: dict | None = None, |
|
|
token: str | bool | None = None, |
|
|
cache_dir: str | Path | None = None, |
|
|
local_files_only: bool = False, |
|
|
revision: str | None = None, |
|
|
**kwargs, |
|
|
) -> "TrainPipelineConfig": |
|
|
model_id = str(pretrained_name_or_path) |
|
|
config_file: str | None = None |
|
|
if Path(model_id).is_dir(): |
|
|
if TRAIN_CONFIG_NAME in os.listdir(model_id): |
|
|
config_file = os.path.join(model_id, TRAIN_CONFIG_NAME) |
|
|
else: |
|
|
print(f"{TRAIN_CONFIG_NAME} not found in {Path(model_id).resolve()}") |
|
|
elif Path(model_id).is_file(): |
|
|
config_file = model_id |
|
|
else: |
|
|
try: |
|
|
config_file = hf_hub_download( |
|
|
repo_id=model_id, |
|
|
filename=TRAIN_CONFIG_NAME, |
|
|
revision=revision, |
|
|
cache_dir=cache_dir, |
|
|
force_download=force_download, |
|
|
proxies=proxies, |
|
|
resume_download=resume_download, |
|
|
token=token, |
|
|
local_files_only=local_files_only, |
|
|
) |
|
|
except HfHubHTTPError as e: |
|
|
raise FileNotFoundError( |
|
|
f"{TRAIN_CONFIG_NAME} not found on the HuggingFace Hub in {model_id}" |
|
|
) from e |
|
|
|
|
|
cli_args = kwargs.pop("cli_args", []) |
|
|
with draccus.config_type("json"): |
|
|
return draccus.parse(cls, config_file, args=cli_args) |
|
|
|